itgle.com
更多“已知圆内接四边形ABCD中,AB、CD的延长线交与点F,则F=()A、40°B、50°C、60°D、70°”相关问题
  • 第1题:

    对边相等,对角相等的凸四边形,是平行四边形吧?

    方法①∠B小于90°;

    左上为A,左下为B,右下为C,右上为D;

    已知∠B=∠D;AB=CD;

    证明:过A作AN⊥BC于N;

          过C作CM⊥AD于M;

          连接AC

    ∵AN⊥BC;CM⊥AD

    ∴∠ANB=∠DMC=90°

    又∵∠B=∠D;AB=CD

    ∴△ANB=△DMC(AAS)

    ∴AN=CM;BN=DM

    又∵∠ANB=∠DMC=90°,AC=AC

    ∴△ACD=△AMD(HL)

    ∴AM=DN

    又∵BN=DM

    ∴BD=AC

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    方法②∠B大于90°

    左上为A,左下为B,右下为C,右上为D;

    已知∠B=∠D;AB=CD;

    证明:延长CD,过A作AN⊥BC于N;

          延长AB,过C作CM⊥AD于M;

          连接AC

    ∵AN⊥BC;CM⊥AD

    ∴∠ANB=∠DMC=90°

    又∵∠B=∠D;AB=CD

    ∴△ANB=△DMC(AAS)

    ∴AN=CM;BN=DM

    又∵∠ANB=∠DMC=90°,AC=AC

    ∴△ACD=△AMD(HL)

    ∴AM=DN

    又∵BN=DM

    ∴BD=AC

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    方法③∠B等于90°

    证明:∵∠B=∠D=90°;AB=CD;AC=AC

    ∴△ABC=△ADC(HL)

    ∴AB=CB

    ∵BD=AC;AB=CD

    ∴凸四边形ABCD为平行四边型。

    有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。


    是平行四边形

  • 第2题:

    如图,四边形ABCD中,AB=10,AD=m,∠D=60o,以AB为直径作⊙O。
    (1)求圆心0到CD的距离(用含m的代数式表示);
    (2)当m取何值时,CD与⊙0相切?


    答案:
    解析:

  • 第3题:

    如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.


    答案:
    解析:
    解:∵四边形ABCD和四边形DEFG均为矩形,
    ∴∠DAF=∠DAB=90°,∠G=90°,DG=EF.
    ∵EF=6,DH=5,∴GH=DG-DH=EF-DH=6-5=1
    在Rt△ADH中,AD=4,DH=5,

  • 第4题:

    在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.


    答案:
    解析:

  • 第5题:

    如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.

    (1)求证:AB=BC;
    (2)当BE⊥AD于E时,试证明:BE=AE+CD.


    答案:
    解析:



  • 第6题:

    ,在四边形ABCD中,AB//CD,AB与CD的边长分别为4和8,若ABE的面积为4,则四边形ABCD的面积为( )

    A.24
    B.30
    C.32
    D.36
    E.40

    答案:D
    解析:

  • 第7题:

    如图8,四边形ABCD内接于⊙O,若∠BCD=130o,则∠BOD=_______°。


    答案:
    解析:
    100

  • 第8题:

    圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。

    • A、4对
    • B、2对
    • C、1对
    • D、3对

    正确答案:A

  • 第9题:

    设有关系模式R(A,B,C,D),F是R上成立的FD集,F={AB→C,D→A},则属性集(CD)的闭包(CD)+为()

    • A、CD
    • B、ACD
    • C、BCD
    • D、ABCD

    正确答案:B

  • 第10题:

    设关系模式R(ABCD),F是R上成立的FD集,F={AB→CD,A→D}。试把R分解成2NF模式集。


    正确答案:如果将R分解成{AD,ABC},则是2NF模式集。

  • 第11题:

    单选题
    圆内接四边形ABCD中,已知∠A=70°,则∠C=(  ).
    A

    20°

    B

    30°

    C

    70°

    D

    110°


    正确答案: D
    解析:
    圆内接四边形的对角互补,所以∠C=110°.

  • 第12题:

    单选题
    已知圆内接四边形ABCD中,AB、CD的延长线交与点F,则F=()
    A

    40°

    B

    50°

    C

    60°

    D

    70°


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设关系模式R (U,F),其中U为属性集, F是U上的一组函数依赖,那么函数依赖的公理系统(Armstrong公理系统)中的合并规则是指为( )为F所蕴涵。

    A.若A→B,B→C,则A→CB.若Y⊆X⊆U,则X→Y。C.若A→B,A→C ,则A→BCD.若A→B,C⊆B,则A→C


    正确答案:C

  • 第14题:

    如图。在直角梯形ABCD中,AB∥CD,∠BAD=90o,且AB=8,AD=3,CD=4,动点P,Q分别以点B和点A为起点同时出发,点P沿B→A,以每秒1个单位速度运动,终点为点A;点Q沿A→D→C→B,以每秒1.5个单位速度运动,终点为点B。设△APQ的面积为y,运动时间为x。
    (1)求y关于x的函数解析式y=f(x);
    (2)画出函数y=f(x)的图象。


    答案:
    解析:

    (2)函数图象如图所示:

  • 第15题:

    如下图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.



    答案:
    解析:
    证明:如右图所示,∵四边形ABCD为平行四边形,∴BO=DO,



    又∵AB∥CD,∴∠FDO=∠EB0

  • 第16题:

    如图,D是△ABC内的一点,BD⊥CD,AD=6,BD=8,CD=6,E,F,G,H分别是AB,AC,CD, BD的中点.则四边形EFGH的周长是()。

    A.12
    B.14
    C.15
    D.16

    答案:D
    解析:
    因为BD⊥CD,BD=8,CD=6,由勾股定理可知BC=10。由三角形中位线定理可知EH=FG=

  • 第17题:

    如图,平面四边形ABCD中,AB=2,BC=4,CD=5,DA=3,
    (1)若∠B与∠D互补,求AC2的值;
    (2)求平面四边形ABCD面积的最大值。


    答案:
    解析:

  • 第18题:

    平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是:

    A.2︰7
    B.3︰13
    C.4︰19
    D.5︰24

    答案:D
    解析:
    第一步,本题考查几何问题,属于平面几何类,用赋值法解题。
    第二步,题干没给出具体数值,可以采用赋值法解题。赋值AB=3,平行四边形ABCD的高为4,则AE=1;由于△AEF相似于△CDF,则两个三角形的高之比为AE:DC=1︰3,可知△AEF的高为4×1/4=1。△ABG与△CDG全等,则△ABG的高为4÷2=2。
    第三步,四边形BEFG面积=△ABG面积-△AEF面积=

    四边形ABCD面积=3×4=12,两者之比为5/2 ︰12=5︰24。
    因此,选择D选项。

  • 第19题:

    如图,平行四边形ABCD的面积是54平方厘米,点E、F、G分别是平行四边形ABCD边上的中点,H为AD边上的任意一点,则阴影部分的面积为( )平方厘米。


    A. 27
    B. 28
    C. 32
    D. 36

    答案:A
    解析:
    方法一:如图所示,由于H为AD边上的任意一点,假设H点与A点重叠,则左边阴影为三角形ABF,其面积为三角形ABC的一半;右边阴影为三角形ADG,其面积为三角形ACD的一半。因此题目所求为平行四边形ABCD面积的一半,平行四边形ABCD的面积是54平方厘米,则阴影部分面积为27平方厘米。因此,本题答案为A选项。



    方法二:如图所示,连接BH和CH,由于点E、F、G分别是平行四边形ABCD边上的中点,则三角形AEH和BEH相等,三角形BFH和CFH相等,三角形CGH和DGH相等,因此题目所求的阴影部分为平行四边形ABCD的一半。平行四边形ABCD的面积是54平方厘米,则阴影部分面积为27平方厘米。因此,本题答案为A选项。

  • 第20题:

    逻辑代数式子f=AB+ABC+AB(C+D),则f的简化式子为()。

    • A、AB
    • B、A+B
    • C、ABC
    • D、ABCD

    正确答案:A

  • 第21题:

    设关系模式R(ABCD),F是R上成立的FD集,F={AB→CD,A→D}。试说明R不是2NF模式的理由。


    正确答案:从已知的函数依赖集F,可知R的候选键是AB。另外,由AB→CD可推出AB→D,再由A→D可知AB→D是部分(局部)函数依赖,因此R不是2NF模式。

  • 第22题:

    在曲柄摇杆机构中,已知连杆BC=50mm、摇杆CD=40mm、机架AD=40mm,则曲柄AB的取值范围是()。


    正确答案:0<AB≤30mm

  • 第23题:

    单选题
    圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。
    A

    4对

    B

    2对

    C

    1对

    D

    3对


    正确答案: A
    解析: 暂无解析