itgle.com

对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为0.4,0.5,0.7,试求 (1)在这三次射击中,恰好有一次击中目标的概率; (2)至少有一次命中目标的概率。

题目

对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为0.4,0.5,0.7,试求 (1)在这三次射击中,恰好有一次击中目标的概率; (2)至少有一次命中目标的概率。


相似考题
参考答案和解析
正确答案: P{三次射击恰击中目标一次}=0.4(1-0.5)(1-0.7)+(1-0.4)0.5(1-0.7)+(1-0.4)(1-0.5)0.7=0.36
P{至少有一次命中}=1-P{未击中一次}=1-(1-0.4)(1-0.5)(1-0.7)=0.91
更多“对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为”相关问题
  • 第1题:

    设一射手射击命中率稳定。射手对靶独立进行3次射击,一次也未命中的概率为1/27,则该射手射击的命中率为1/3。()

    此题为判断题(对,错)。


    正确答案:错误

  • 第2题:

    甲乙两人独立地向同一目标各射击一次,命中率分别为0.8和0.6,现已知目标被击中,则它是甲射中的概率为:

    A.0.26
    B.0.87
    C.0.52
    D.0.75

    答案:B
    解析:
    参考解析:提示:设“甲击中”为A,“乙击中”为B,A、B独立,目标被击中即甲、乙至少一人击中,求P(A│A+B)。


  • 第3题:

    甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.
      (1)甲、乙两人同时向目标射击,求目标被命中的概率;
      (2)甲、乙两人任选一人,由此入射击,目标被击中,求是甲击中的概率.


    答案:
    解析:
    【解】(1)设A={甲击中目标},B={乙击中目标},C={击中目标},则C=A+B,
    P(C)=P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)
    =0.6+0.5-0.6×0.5=0.8.
    (2)设A1={选中甲},A2={选中乙},B={目标被击中},则

  • 第4题:

    已知军训打靶对目标进行 10 次独立射击,假设每次打靶射击命中率相同,若击中靶子次数的方差为 2.1,则每次命中靶子概率等于( )

    A.0.2
    B.0.3
    C.0.4
    D.0.5

    答案:B
    解析:

  • 第5题:

    甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为().

    • A、0.5
    • B、0.8
    • C、0.55
    • D、0.6

    正确答案:B

  • 第6题:

    已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为()

    • A、0.04
    • B、0.2
    • C、0.8
    • D、0.96

    正确答案:C

  • 第7题:

    对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于()。

    • A、0.1
    • B、0.2
    • C、0.3
    • D、0.4

    正确答案:D

  • 第8题:

    两射手独立地向同一目标各射击一次,假设两射手的命中率分别为0.9和0.8,则目标被击中的概率为()


    正确答案:0.98

  • 第9题:

    对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为0.4,0.5,0.7,则在三次射击中恰有一次击中目标的概率为()。


    正确答案:0.36

  • 第10题:

    单选题
    某人独立地射击10次,每次射击命中目标的概率为0.8,随机变量X表示10次射击中命中目标的次数,则E(X2)等于().
    A

    64

    B

    65.6

    C

    66.6

    D

    80


    正确答案: C
    解析: 把每次射击看成是做一次伯努利试验,"成功"表示"命中目标","失败"表示"没有命中目标",出现成功的概率p=0.8.于是,X服从参数n=10,p=0.8的二项分布.已知二项分布的数学期望与方差分别是 E(X)=np=10×0.8=8, D(X)=np(1-p)=10×0.8×0.2=1.6. 于是,由方差的计算公式推得 E(X2)=D(X)+[E(X)]2=1.6+82=65.6.故选(B). 本题借助于常用分布的数字特征来求E(X2)是比较方便的,因为常用分布的数学期望与方差可以作为已知值使用.如果用随机变量函数的数学期望的定义

  • 第11题:

    单选题
    甲、乙两人独立的对同一目标各射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率等于()。
    A

    3/4

    B

    3/5

    C

    1/2

    D

    3/7

    E

    3/8


    正确答案: B
    解析: 暂无解析

  • 第12题:

    问答题
    22.甲、乙两人独立地各向同一目标射击一次,其命中率分别为0.6和O.7,求目标被命中的概率.若已知目标被命中,求它是甲射中的概率.

    正确答案:
    解析:

  • 第13题:

    某人连续向一目标独立射击(每次命中率都是3/4),一旦命中,则射击停止,设X 为射击的次数,那么射击3次停止射击的概率是:


    答案:C
    解析:

  • 第14题:

    甲、乙两人独立地向同一目标射击,甲、乙两人击中目标的概率分别为0.8,
    0.5,两人各射击1次,求至少有1人击中目标的概率.


    答案:
    解析:

  • 第15题:

    某人向同一目标独立重复射击,每次射击命中目标的概率为P(0
    A.3p(1-p)2
    B.6p(1-P)2
    C.3p2(1-P)2
    D.6p2(1-p)2

    答案:C
    解析:
    分析事件第4次射击恰好第2次击中目标可知,它表示前3次射击中有1次击中,同时,第四次命中。前3次射击中命中的次数服从二项分布,恰有l次击中的概率为C31p(1-p)3-1= 3p(1-p)2。所以整个事件的概率为3p(1-p)2×p=3p2(1-p)2故选C。

  • 第16题:

    甲、乙两人独立的对同一目标各射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率等于()。

    • A、3/4
    • B、3/5
    • C、1/2
    • D、3/7
    • E、3/8

    正确答案:A

  • 第17题:

    甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是()


    正确答案:6/11

  • 第18题:

    在三次独立重复射击中,若至少有一次击中目标的概率为37/64,则每次射击击中目标的概率为()。


    正确答案:1/4

  • 第19题:

    某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为()。

    • A、3p(1-p)2
    • B、6p(1-p)2
    • C、3p2(1-p)2
    • D、6p2(1-p)2

    正确答案:C

  • 第20题:

    一射手对同一目标独立地进行4次射击,假设每次射击命中率相同,若至少命中1次的概率为80/81,则该射手的命中率p=()。


    正确答案:2/3

  • 第21题:

    单选题
    某人向同一目标独立重复射击,每次命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为(  )。
    A

    3p(1-p)2

    B

    6p(1-p)2

    C

    3p2(1-p)2

    D

    6p2(1-p)2


    正确答案: C
    解析:
    前3次射击中有1次命中目标的概率为C31p(1-p)2=3p(1-p)2,由乘法公式得第4次射击恰好为第2次命中目标的概率为p·3p(1-p)2=3p2(1-p)2

  • 第22题:

    单选题
    甲乙两人独立地向同一目标各射击一次,命中率分别为0.8和0.6,现已知目标被击中,则它是甲射中的概率为:()
    A

    0.26

    B

    0.87

    C

    0.52

    D

    0.75


    正确答案: B
    解析: 暂无解析

  • 第23题:

    填空题
    设X表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则E(X2)=____。

    正确答案: 18.4
    解析:
    由题意可知,X~B(10,0.4),则
    E(X2)=D(X)+[E(X)]2=10×0.4(1-0.4)+(10×0.4)2=18.4