itgle.com
更多“2、一曲线过原点且在曲线上每一点(x,y)处的切线斜率等于x,求这曲线的方程”相关问题
  • 第1题:

    曲线y=x3—2x在点(1,-1)处的切线方程为 .


    正确答案:
    y=x-2【考情点拨】本题主要考查的知识点为切线方程.【应试指导】

  • 第2题:

    已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。


    正确答案:

    y′=3x2-6x,当x=1时,y=1-3-1=-3,即点(1,-3)在曲线上。可知此切线的斜率为k=3×12-6×1=-3,由点斜式可知,此切线的方程为y-(-3)=-3(x-1)即为y=-3x。

  • 第3题:

    设曲线y=y(x)上点P(0,4)处的切线垂直于直线x-2y+5=0,且该点满足微分方程y″+2y′+y=0,则此曲线方程为( )。

    A.
    B.
    C.
    D.

    答案:D
    解析:

  • 第4题:

    求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.


    答案:
    解析:

    即y=2ax-a2,


  • 第5题:

    设曲线y=x2+x-2在点M处切线的斜率为2,则点M的坐标为().


    答案:
    解析:

    【考情点拨】本题考查了曲线上一点处的切线的知识点.

  • 第6题:

    已知曲线y=ax3+bx2+cx在点(1,2)处有水平切线,且原点为该曲线的拐点,求a,b,c的值,并写出此曲线的方程.


    答案:
    解析:

  • 第7题:

    曲线y=x3-x在点(1,0)处的切线方程y=______.


    答案:
    解析:
    填2(x-1).因为y'=3x2-1,y'(1)=2,则切线方程为y=2(x-1).

  • 第8题:

    设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线,求此曲线的方程。


    答案:
    解析:

  • 第9题:

    求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.


    答案:
    解析:


    【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间.

  • 第10题:

    填空题
    曲线y=x+sin2x在点(π/2,1+π/2)处的切线方程是____。

    正确答案: y=x+1
    解析:
    将y=x+sin2x对x求导得y′=1+2sinxcosx,则点(π/2,1+π/2)处切线斜率y′(π/2)=k|x=π/2=1,则切线方程y-(1+π/2)=x-π/2,即y=x+1。

  • 第11题:

    单选题
    一曲线在其上任一点的切线的斜率为-2x/y,则此曲线是(  )。
    A

    直线

    B

    抛物线

    C

    椭圆

    D


    正确答案: C
    解析:
    由题意可知,y′=-2x/y,解此一阶微分方程得y2/2=-x2+c,即曲线为椭圆。

  • 第12题:

    单选题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为(  )。
    A

    y=exsin2x

    B

    y=-exsin2x

    C

    y=exsinx

    D

    y=-exsinx


    正确答案: B
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r1,2=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第13题:

    曲线y=x2+1在点(1,2)处的切线方程为__________.


    正确答案:
    y=2x

  • 第14题:

    如果曲线y=f(x)在点(x,y)处的切线斜率与x2成正比,并且此曲线过点(1,-3)和(2,11),则此曲线方程为( )。

    A. y=x3-2

    B. y=2x3-5

    C. y=x2-2

    D. y=2x2-5


    正确答案:B

    由曲线过点(1,-3)排除A、C项。由此曲线过点(2,11)排除D,故选B。y=2x3-5显然过点(1,-3)和(2,11),且它在(x,y)处的切线斜率为6x2,显然满足与x2成正比。

  • 第15题:

    已知曲线L的参数方程是,则曲线L上t=π/2处的切线方程是:
    A. x+y=π B.x-y=π-4 C. x-y=π D.x+y=π-4


    答案:B
    解析:
    利用点斜式写出切线方程。

  • 第16题:

    曲线x2+y2=2x在点(1,1)处的切线方程为.


    答案:
    解析:
    【答案】y=1【考情点拨】本题考查了曲线上一点处的切线方程的知识点.
    【应试指导】由x2+y2=2x,两边对x求导得2x+

  • 第17题:

    曲线y=ex+x2在点(0,1)处的切线斜率为______.


    答案:
    解析:

  • 第18题:

    曲线y=2x2在点(1,2)处的切线方程y=______.


    答案:
    解析:

  • 第19题:

    如果曲线Y=f(x)在点(x,y)处的切线斜率与x2成正比,并且此曲线过点(1,-3)和(2,11),则此曲线方程为(  ).

    A.Y=3-2
    B.Y=2x3-5
    C.Y=x2-2
    D.Y=2x2-5

    答案:B
    解析:
    由曲线过点(1,-3)排除A、C项.由此曲线过点(2,11)排除D,故选B.Y=2x3-5显然过点(1,-3)和(2,11),且它在(x,Y)处的切线斜率为6x2,显然满足与x2成正比.

  • 第20题:

    已知曲线y=x2+x-2的切线ι斜率为3,则ι的方程为_________.


    答案:
    解析:
    【答案】3x-y-3=0【考情点拨】本题考查了切线的知识点.

  • 第21题:

    问答题
    已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。

    正确答案: 解:y′=3x2-6x,当x=1时,y=1-3-1=-3,即点(1,-3)在曲线上。可知此切线的斜率为k=3×12-6×1=-3,由点斜式可知,此切线的方程为y-(-3)=-3(x-1)即为y=-3x。
    解析: 暂无解析

  • 第22题:

    填空题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为____。

    正确答案: y=-exsin2x
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第23题:

    单选题
    切线支距法测设圆曲线带有缓和曲线的曲线是以()为坐标原点,以切线为X轴,过原点的半径为Y轴,利用缓和曲线和圆曲线上各点的X轴、Y轴坐标测设曲线。
    A

    ZH点或HZ点

    B

    HY点或YH点

    C

    QZ点

    D

    JD点


    正确答案: B
    解析: 暂无解析

  • 第24题:

    单选题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为(  )。
    A

    y=excos2x

    B

    y=-excos2x

    C

    y=exsin2x

    D

    y=-exsin2x


    正确答案: A
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。