设函数f(x)=ax3+bx2+cx+d,问常数a,b,c满足什么关系时,f(x)分别没 有极值、可能有一个极值、可能有两个极值?
1.设f(x)=xe-x,求函数f(x)的极值(6分)
2.函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点 B.一定是函数f(x)的极值点 C.一定不是函数f(x)的极值点 D.是否为函数f(x)的极值点,还不能确定
3.下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数 B.设f´(x)为单调函数,则f(x)也为单调函数 C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点 D.设f(x)在(a,b)内可导且只有一个极值点xo,f´(xo)=0
4.设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取极值不能确定
第1题:
第2题:
第3题:
第4题:
第5题: