itgle.com

已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是( )A.x<-1或x>3 B.-1<x<3 C.x<-1 D.x>3

题目

已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是( )

A.x<-1或x>3 B.-1<x<3 C.x<-1 D.x>3


相似考题
更多“已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取 ”相关问题
  • 第1题:

    ●分别运行下列两段程序后,y1和y2的值是(39)。

    程序段1:

    #define f(x) x*x

    floatX,y1;

    X=2.0;

    Y1=x/f(x);

    程序段2:

    #define f(x) (x*x)

    floatx,y2;

    X=2.0;

    y2=x/f(x);,

    ( 39)A.y1=2.0,y2=0.5

    B.y1=0.5,y2=2.0

    C. y1=2.0,y2=1.0

    D. y1=1.0,y2=2.0


    正确答案:A

  • 第2题:

    阅读以下说明和c++代码,将应填入(n)处的字句写在对应栏内。

    【说明】

    现要编写一个画矩形的程序,目前有两个画图程序:DP1和DP2,DP1用函数draw_a_line(x1, y1,x2,y2)画一条直线,DF2则用drawline(x1,x2,y1,y2)画一条直线。当实例画矩形时,确定使用DP1还是DP2。为了适应变化,包括“不同类型的形状”和“不同类型的画图程序”,将抽象部分与实现部分分离,使它们可以独立地变化。这里,“抽象部分”对应“形状”,“实现 部分”对应“画图”,与一般的接口(抽象方法)与具体实现不同。这种应用称为Bridge(桥接)模式。图9-7显示了各个类间的关系。

    这样,系统始终只处理3个对象:Shape对象、Drawing对象、DP1或DP2对象。以下是 C++语言实现,能够正确编译通过。

    【C++代码】

    class DP1{

    public:

    static void draw_a_line(double x1, double y1,double x2, double y2){

    //省略具体实现

    }

    );

    class DP2{

    public:

    static void drawline(double x1, double x2,double y1, double y2){

    //省略具体实现

    }

    };

    class Drawing{

    public:

    (1) void drawLine(double x1,double y1,double x2,double y2)=0;

    };

    class V1Drawing:public Drawing{

    public:

    void drawLine(double x1, double y1,double x2, double y2){

    DP1::draw_a_line(x1,y1,x2,y2);

    }

    };

    class V2Drawing:public Drawing{

    public:

    void drawLine(double x1, double y1, double x2, double y2){

    (2);

    }

    };

    class Shape{

    private:

    (3) _dp;

    public:

    Shape(Drawing *dp);

    virtual void draw()=0;

    void drawLine(double x1, double y1, double x2, double y2);

    };

    Shape::Shape(Drawing *dp)

    {

    _dp = dp;

    }

    void Shape::drawLine(double x1, double y1, double x2, double y2)

    { //画一条直线

    (4);

    }

    class Rectangle: public Shape{

    private:

    double _x1,_y1,_x2,_y2;

    public:

    Rectangle(Drawing *dp, double x1, double y1,

    double x2, double y2);

    void draw();

    };

    Rectangle::Rectangle(Drawing *dp, double x1, double y1, double x2, double y2)

    :(5)

    {

    _x1=x1;_y1=y1;_x2=x2;_y2=y2;

    }

    void Rectangle::draw()

    {

    //省略具体实现

    }


    正确答案:(1) virtual (2) DP2::drawline(x1x2y1y2) (3) Drawing (4) _dp->drawLine(x1y1x2y2) (5) Shape(dp)
    (1) virtual (2) DP2::drawline(x1,x2,y1,y2) (3) Drawing (4) _dp->drawLine(x1,y1,x2,y2) (5) Shape(dp) 解析:由函数drawLine()结尾的“=0”易知,空(1)应填virtual。
    空(2)是调用DP2系统的相应方法,可参照DP1的对应函数的函数体,但要注意参数不完全相同,应填DP2::drawline(x1,x2,y1,y2)。
    _dp属性是用来存储Drawing对象的,参照Shape的构造函数可确认这一点,空(3)应填 Drawing*。
    Shape类的drawLine方法是通过调用Drawing对应的方法来实现所需要的功能,因此空(4)应填_dp->drawLine(x1,y1,x2,y2)。
    空(5)显然是基类构造函数,应填Shape(dp)。

  • 第3题:

    若y1(x)是线性非齐次方程y '+ p(x)= Q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数中哪一个是y '+ p(x)y= Q(x)的解?

    A. y=cy1(x)+y2(x)
    B. y=y1(x)+c2y2(x)
    C. y=c[y1 (x)+y2(x)]
    D.y=c1y(x)-y2(x)

    答案:A
    解析:
    提示:由一阶线性非齐次方程通解的结构确定,即由对应齐次方程的通解加上非齐次的一特解组成。

  • 第4题:

    设非齐次线性微分方程y´+P(x)y=Q(x)有两个不同的解析:y1(x)与y2(x),C为任意常数,则该方程的通解是( ).

    A.C[(y1(x)-y2(x)]
    B.y1(x)+C[(y1(x)-y2(x)]
    C.C[(y1(x)+y2(x)]
    D.y1(x)+C[(y1(x)+y2(x)]

    答案:B
    解析:
    y1(x)-y2(x)是对应的齐次方程y

  • 第5题:


    A、 y1=x,y2=ex
    B、 y1=e-x,y2=ex
    C、 y1=e-x,y2=xe-x
    D、 y1=ex,y2=xex

    答案:D
    解析:

  • 第6题:

    如果从变量y1,y2到x1,x2的线性变换是,则变量x1,x2到变量y1,y2的线性变换是:


    答案:A
    解析:

  • 第7题:

    如果业务Y1和业务Y2具有替代性,当Y1资费降低而Y2资费不变时,必然导致( )。

    A:Y1业务量降低
    B:Y2业务量的提高
    C:Y1收入的降低
    D:Y2业务量的降低

    答案:D
    解析:
    本题考查对线性从量资费特点的理解。线性从量资费当一方资费下降,另一方不变时,必然导致下降方业务量增长,不变方业务量下降。

  • 第8题:

    一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1

    A.0
    B.1
    C.2
    D.3

    答案:B
    解析:
    由一次函数y1=kx+b的图象可知,该函数在R上单调递减且与y轴的正半轴相交,由此可得k<0,b>0。同理,由一次函数y2=x+a的图象可知,该函数与y轴的负半轴相交,可得a<0。当x<3时,y1=kx+b的图象始终在,y2=x+a图象的上方,所以y1>y2。所以题中结论正确的只有①。

  • 第9题:

    单选题
    在由两个不同组别消费者组成的市场1和市场2上,产量分别为Y1和Y2,消费者反需求函数为P1(Y1)和P2(Y2),用C(Y1+Y2)表示生产的成本,则在三级价格歧视下,厂商在两个市场上总产量分割满足什么条件时,以实现利润最大化。()
    A

    MC(Y1+Y2)=MR1(Y1)=MR2(Y2

    B

    MR2(Y2)>MC(Y1+Y2)=MR1(Y1)

    C

    MR1(Y1)>MC(Y1+Y2)=MR2(Y2)

    D

    MR1(Y1)=MR2(Y2)=MC(Y1+Y2)


    正确答案: D
    解析: 暂无解析

  • 第10题:

    单选题
    已知生产可能性曲线函数为y1=50-3y22,若y2=6,则在该点产品y2代替y1的精确边际替代率为()
    A

    -20

    B

    -36

    C

    -40

    D

    -50


    正确答案: C
    解析: 暂无解析

  • 第11题:

    单选题
    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是(  )。
    A

    C[y1(x)-y2(x)]

    B

    y1(x)+C[y1(x)-y2(x)]

    C

    C[y1(x)+y2(x)]

    D

    y1(x)+C[y1(x)+y2(x)]


    正确答案: C
    解析:
    由题意可知,y(_)=y1(x)-y2(x)是y′+P(x)y=0的一个解,则y′+P(x)y=0的通解是C[y1(x)-y2(x)]。故所求方程通解为y1(x)+C[y1(x)-y2(x)]

  • 第12题:

    单选题
    若y2(x)是线性非齐次方程y′+P(x)y=Q(x)的解,y(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(x)y=Q(x)的解()?
    A

    y=cy1(x)+y2(x)

    B

    y=y1(x)+c2y2(x)

    C

    y=c[y1(x)+y2(x)]

    D

    y=c1y(x)-y2(x)


    正确答案: C
    解析: 由一阶线性非齐次方程通解的结构确定,即由对应齐次方程的通解加上非齐次的一特解组成。

  • 第13题:

    以下程序中,函数fun的功能是计算x2(上标)-2x+6,主函数中将调用fun函数计算:

    y1=(x+8)2(上标)-2(x+8)+6

    y2=sin2(上标)(x)-2sin(x)+6

    请填空。

    include "math.h"

    double fun(double x){ return (x*x-2*x+6);}

    main()

    { double x,y1,y2;

    printf("Enter x:"); scanf("%1f",&x);

    y1=fim([ ]);

    y2=run([ ]);

    printf("y1=%1f,y2=%1f\n",y1,y2);

    }


    正确答案:x+8 sin(x)
    x+8 sin(x) 解析:根据函数fun实现的功能可知:主函数中的y1、y2想要实现的是相同的功能,又根据 y1=(x+8)2-2(x+8)+6=(x+8)*(x+8)-2(x+8)+6,可看出y1=fun(  [11]  );处填:x+8;同理可知y2=fun(  [12]  );处填sin(x)。

  • 第14题:

    程序段如下,当发生Form_Click事件时,窗体上输出的结果是( )。 Option Explicit Private x As Integer Public y As Integer Sub Test() Dim y as integer x=2:y=2 Print"x1=";x;"y1=";y End Sub Private Sub Form_Click() x=1:y=1 Test Print "X2=";x;"y2=";y End Sub

    A.x1=2 y1=2 x2=2 y2=1

    B.x1=2 y1=2 x2=2 y2=2

    C.x1=2 y1=1 x2=2 y2=2

    D.x1=2 y1=1 x2=2 y2=1


    正确答案:A
    解析:本题首先定义了一个窗体级变量x和一个全局变量y。当发生窗体的单击事件后,给窗体级变量x和全局变量y分别赋值1,然后调用Test函数。在该函数中定义了一个局部变量y,在函数中使用的y是局部变量,给窗体级变量x赋值2,给局部变量y赋值2,输出的x和y的值都是2。函数调用返回后,窗体级的变量x的值为2,全局变量y的值依旧为1。

  • 第15题:

    设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。

    A.C[y1(x)-y2(x)]
    B.y1(x)+C[y1(x)-y2(x)]
    C.C[y1(x)+y2(x)]
    D.y1(x)+C[y1(x)+y2(x)]

    答案:B
    解析:
    因为y1(x),y2(x)是y′+P(x)y=Q(x)的两个不同的解,所以C(y1(x)-y2(x))是齐次方程y′+P(x)y=0的通解,进而y1(x)+C[y1(x)-y2(x)]是题中非齐次方程的通解。

  • 第16题:

    已知y1(X)与y2(x)是方程:y" + P(x)y'+Q(x)y = 0的两个线性无关的特解,y1(x)和y2(x)分别是方程y"+P(x)y'+Q(x)y=R1(x)和y"+p(x)+Q(x)y=R2(x)的特解。那么方程y"+p(x)y'+Q(x)y=R1(x)+R2(x)的通解应是:

    A. c1y1+c2y2
    B. c1Y1(x) +c2Y2 (x)
    C. c1y1+c2y2 +Y1(x)
    D. c1y1+c2y2 +Y1 (x) +Y2 (x)

    答案:D
    解析:
    提示:按二阶线性非齐次方程通解的结构,写出对应二阶线性齐次方程的通解和非齐次方程的一个特解,得到非齐次方程的通解。

  • 第17题:

    若y2(x)是线性非齐次方程y'+ P(x)y=Q(x)的解,y1(x)是对应的齐次方程y'+ P(x)y=0的解,则下列函数中哪一个是y'+ P(x)y=Q(x)的解?
    A. y=cy1(x)+y2(x) B. y=y1(x)+c2y2(x)
    C. y=c[y1(x)+y2(x)] D. y=cy1(x)-y2(x)


    答案:A
    解析:
    提示:由一阶线性非齐次方程通解的结构确定,即由对应齐次方程的通解加上非齐次的一特解组成。

  • 第18题:

    设有两个参与人x和y,x有两个纯策略x1和x2,y有两个纯策略y1和y2。当y选择y1和y2时,x选择x1得到的支付分别为x11和x12,选择x2得到的支付分别为x1和x22;当x选择x1和x2时,y选择y1得到的支付分别为y11和y21,选择y2得到的支付分别为y12和y22 (1)试给出相应的博弈矩阵。 (2)这种博弈矩阵的表示是唯一的吗?为什么?


    答案:
    解析:
    (1)如表10-10所示。

    (2)不唯一。例如,将表的行与列互换后得到的就是另外一个博弈矩阵。

  • 第19题:

    若y2(x)是线性非齐次方程y'+p(x)y=q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=q(x) 的解的是( )。
    A.y=Cy1(x)+y2(x) B. y=y1(x)+Cy2(x)
    C.y=C[y1(x)+y2(x)] D.y=Cy1(x)-y2(x)


    答案:A
    解析:
    提示:齐次方程的通解加上非齐次的特解仍是非齐次的解。

  • 第20题:

    已知X1=+0010100,Y1=+0100001,X2=0010100,Y2=0100001,试计算下列各式(设字长为8位)。 (1)[X1+Y1]补=[X1]补+[Y1]补=() (2)[X1-Y2]补=[X1]补+[-Y2]补=() (3)[X2-Y2]补=[X2]补+[-Y2]补=() (4)[X2+Y2]补=[X2]补+[Y2]补=()


    正确答案:00010100+00100001=00110101;00010100+00100001=00110101;11101100+00100001=00001101;11101100+11011111=11001011

  • 第21题:

    单选题
    若y2(X)是线性非齐次方程y'+p(x)y-q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=g(x)的解的是()。
    A

    y=Cy1(x)+y2(x)

    B

    y=y1(x)+Cy2(x)

    C

    y=C[y1(x)+y2(x)]

    D

    y=Cy1(x)-y2(x)


    正确答案: C
    解析: 暂无解析

  • 第22题:

    单选题
    设y1=e2x/2,y2=exshx,y3=exchx,则(  )。
    A

    y1,y2,y3都没有相同的原函数

    B

    y2与y3有相同的原函数,但与y1的原函数不相同

    C

    y1,y2,y3有相同的原函数ex/(chx+shx)

    D

    y1,y2,y3有相同的原函数ex/(chx-shx)


    正确答案: B
    解析:
    由于y1=e2x/2,y2=(e2x/2)-1/2,y3=(e2x/2)+1/2,故三个函数的原函数都不相同。

  • 第23题:

    单选题
    若y2(x)是线性非齐次方程y′+P(z)y=Q(x)的解,y1(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(z)y=Q(x)的解?()
    A

    y=cy1(x)+y2(x)

    B

    y=y1(x)+c2y2(x)

    C

    y=c[y1(x)+y2(x)]

    D

    y=c1y(x)-y2(x)


    正确答案: D
    解析: 暂无解析