itgle.com
更多“在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是( )。 A.2.5 B.5 C.10 D.15 ”相关问题
  • 第1题:

    下列关于函数依赖的描述,错误的是( )。

    A.若A→B,B→C,则A→C B.若A→B,A→C,则A→BC C.若B→A,C→A,则BC→A D.若BC→A,则B→A,C→A


    正确答案:D

  • 第2题:

    锐角三角形ABC中,sinA=√5/5,D为BC边上的点,若△ABD 和△ACD的面积分别为2和4,过D作DE ⊥AB于E,DF⊥AC于F,


    答案:
    解析:

  • 第3题:

    如图所示,△ABC中DE∥BC,且BO和CO分别是∠ABC和∠ACB的角平分线。已知AB=25.4 cm,BC=24.5 cm,AC=20 cm。问△ADE的周长是多少?

    A.45.4 cm B.45.1 cm C.44.8 cm D.44.5 cm


    答案:A
    解析:
    根据题意可知,DO=BD,OE=EC,则△ADE的周长=AB+AC=45.4 cm。

  • 第4题:

    在△ABC中,已知AB=5,AC=3,∠A=120°,则BC长为



    答案:A
    解析:

  • 第5题:

    在△ABC中,若AB=3,A=45°,C=30°,则BC=(  )



    答案:C
    解析:

  • 第6题:

    在 ABC中,∠ABC=600,AB=4,BC=6,则AC=()


    答案:C
    解析:

  • 第7题:

    如,在直角三角形ABC中,AC=4,BC=3,DE//BC,已知梯形BCDE的面积为3,则DE长为( )



    答案:D
    解析:

  • 第8题:

    在△ABC中,∠C=90o,AC=8,BC=6,则△ABC的外接圆直径的长为__________ 。


    答案:
    解析:
    10

  • 第9题:

    如图,Rt△ABC中,AB=6,BC=4,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为__________。



    答案:
    解析:

  • 第10题:

    分别用分析法,综合法证明如下命题。
    命题:如图:三角形ABC的角B和角C的角平分线相交于点0,过点O作平行于底边BC的直线,交AB边于点D,交AC边于点E,则DE=BD+EC。



    答案:
    解析:
    证明:(1)分析法证明:要证DE=BD+EC.
    需证OD=BD,OE=CE,
    需证∠DBO=∠DOB,∠ECO=∠EOC,
    显然由已知OB为∠DBC的平分线,OC为∠ECB的平分线,且DE∥BC,所以∠DBO=∠DOB,∠ECO=∠EOC,所以命题成立。
    (2)综合法证明:
    ∵OB为∠DBC的平分线,OC为1ECB的平分线,且DE∥BC,
    ∴∠DBO=∠OBC=∠DOB,∠EC0=∠BC0=∠EOC,
    ∴BD=OD.EC=OE。
    又∵DE=OD+DE
    ∴DE=BD+EC。

  • 第11题:

    有一镗削工件,三孔ABC的坐标尺寸如图,为检验上的需要,计算三孔ABC的中心距尺寸,正确的是()。

    • A、AB=26.93,BC=23.35,AC=27.2
    • B、AB=26.93,BC=20.23,AC=26.5
    • C、AB=25.03,BC=23.35,AC=27.2
    • D、AB=25.03,BC=20.23,AC=27.2

    正确答案:A

  • 第12题:

    单选题
    在△ABC中,AC=5,中线AD=7,则AB边的取值范围是(  )。
    A

    1<AB<29

    B

    4<AB<24

    C

    5<AB<19

    D

    9<AB<19


    正确答案: D
    解析:
    延长AD到E,使DE=AD,则ABEC为平行四边形,所以BE=5,AE=14,因此9<AB<19。

  • 第13题:

    设A、B、C为随机事件,则( )。

    A.P(A-B-C)=P(A)-P(AB)-P(AC)-P(BC)+P(ABC)
    B.P(A-B-C)=P(A)-P(AB)-P(AC)+P(ABC)
    C.P(A-B-C)=P(A)-P(AB)-P(BC)+P(ABC)
    D.P(A-B-C)=P(A)-P(AC)-P(BC)+P(ABC)

    答案:B
    解析:

  • 第14题:

    如图,D是△ABC内的一点,BD⊥CD,AD=6,BD=8,CD=6,E,F,G,H分别是AB,AC,CD, BD的中点.则四边形EFGH的周长是()。

    A.12
    B.14
    C.15
    D.16

    答案:D
    解析:
    因为BD⊥CD,BD=8,CD=6,由勾股定理可知BC=10。由三角形中位线定理可知EH=FG=

  • 第15题:

    平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是:

    A.2︰7
    B.3︰13
    C.4︰19
    D.5︰24

    答案:D
    解析:
    第一步,本题考查几何问题,属于平面几何类,用赋值法解题。
    第二步,题干没给出具体数值,可以采用赋值法解题。赋值AB=3,平行四边形ABCD的高为4,则AE=1;由于△AEF相似于△CDF,则两个三角形的高之比为AE:DC=1︰3,可知△AEF的高为
    4*1/4=1。△ABG与△CDG全等,则△ABG的高为4÷2=2。
    第三步,四边形BEFG面积=△ABG面积-△AEF面积=

    四边形ABCD面积=3×4=12,两者之比为 ︰12=5︰24。
    因此,选择D选项。

  • 第16题:

    在△ABC中,AB=2,BC=3,B=60°,BD为AC边上的高.求AC,BD.


    答案:
    解析:

  • 第17题:

    在△ABC中,AB=2,BC=3,B=60°.求AC及△ABC的面积.


    答案:
    解析:
    解:由余弦定理得

  • 第18题:

    在三角形ABC,AB=4,AC=6,BC=8,D为BC的中点,则AD=




    答案:B
    解析:

  • 第19题:

    如右图所示,在△ABC:中,D为AC的中点,E在BC上,且 BE : EC=1 : 2,AE与BD交于F。则△BEF与四边形EFDC 的面积之比为( )。

    A. 1 : 3 B. 1 : 4
    C. 1 : 5 D. 1 : 6


    答案:C
    解析:

  • 第20题:

    如图1,在△ABC中,BC = 8 cm,AB的垂直平分线交AB于点D, 交边AC于点E,△BCE的周长等于18 cm,则AC的长等于( )

    A、6cm 
    B、8cm
    C、10cm  
    D、12cm

    答案:C
    解析:

  • 第21题:

    如图在ΔABC中,DE∥BC,若AD:DB=1:3,DE=2,则BC等于( )。

    A.8
    B.6
    C.4
    D.2

    答案:A
    解析:
    由于DE∥BC,所以DE:BC=AD:AB,又由AD:DB=1:3,所以AD:AB=1:4,由DE=2得BC=8。

  • 第22题:

    (10分)如图,几何体A1B1C1-ABC中,AB=AC,AB⊥AC,棱AA1,BB1,CC1都垂直于面ABC,BC=AA1=2BB1=2CC1=4,D为B1C1的中点,E为A1D的中点。
    求证:(1)AE⊥BC;(3分)
    (2)求异面直线AE与DC所成角的余弦值。(7分)


    答案:
    解析:

  • 第23题:

    在Z中若(a,c)=1,(b,c)=1,则可以得出哪两个数是素数?()

    • A、(abc,a)=1
    • B、(ac,bc)=1
    • C、(abc,b)=1
    • D、(ab,c)=1

    正确答案:D