现在将编号为1、2、3、4、5、6的6个球分别放入编号为1、2、3、4、5、6的6个盒子里,每个盒子放1个球。请问,恰好有2个盒子编号与球编号一样的投放方法有多少种?
A.15
B.24
C.135
D.270
第1题:
将四个颜色互不相同的球全部放人编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于盒子的编号,则不同的放球方法有( )种。 A.9 B.10 C.12 D.18
第2题:
A、B、C、D四个盒子中依次放有6、4、5、3个球。第l个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子……如此进行下去。当34位小朋友放完后,问B盒子中放有多少个球?( )
A.4
B.6
C.8
D.11
第3题:
有16个盒子。里面放了27个小球,每个盒子放了1个、2个或者3个小球,其中放1个小球的盒子数与放2个和3个小球的盒子总数一样多,问放2个小球的盒子有多少个?
A.3
B.4
C.5
D.6
第4题:
第5题:
第6题:
第7题:
第8题:
第9题:
第10题:
现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍,共放了22个球。最终甲箱中的球比乙箱()。
第11题:
多1个
少1个
多2个
少2个
第12题:
12种
18种
36种
54种
第13题:
把6个标有不同标号的小球放入三个大小不同的盒子里。大盒子放3个球,中号盒子放2个,小盒子放1个。问共有多少种放法?( )A.50 B.60 C.70 D.40
本题正确答案为B。本题是一个乘法原理与组合综合运用的问题。首先,把球放入盒子需分三步走,这需用乘法原理。其次,放入盒中的球不计顺序,这是一个组合问题,因此,综合以上两点可知,共有C36×C23×C11=20×3×1=60种放法
第14题:
将四个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于盒子的编号,则不同的放球方法有( )种。
A.9
B.10
C.12
D.18
第15题:
第16题:
第17题:
第18题:
第19题:
第20题:
第21题:
将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()。
第22题:
将7个乒乓球放入3个同样的盒子里,允许有的盒子空着不放,共有()种不同的放法。
第23题:
340
286
446
364