itgle.com
参考答案和解析
答案:C
解析:
解题指导: 初步学习过概率的考生可能选择用条件概率去做。方法如下:第一次取到白球,第二次取到白球;(4/10)×3/9=12/90。第一次取到黑球,第二次取到白球。(6/10)×4/9=24/90。12/90+24/90=36/90=2/5。故答案为C。
更多“盒中有4个白球6个红球,无放回地每次抽取1个,则第二次取到白球的概率是 ”相关问题
  • 第1题:

    盒内装有10个白球,2个红球,每次取1个球,取后不放回。任取两次,则第二次取得红球的概率是:

    A. 1/7
    B.1/6
    C.1/5
    D. 1/3

    答案:B
    解析:

    或“试验分两步,求第二步结果的概率”用全概率公式。

  • 第2题:

    一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.
      (1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.


    答案:
    解析:
    【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
    (2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

    (3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则

  • 第3题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第4题:

    袋中有50个球,其中20个新球,30个旧球,现每次取1球,无放回地取2次,则第2次取得旧球的概率是()。



    答案:A
    解析:

  • 第5题:

    一个袋子里有8个黑球,8个白球,随机不放回连续取球5次,每次取出1个球,求最多取到3个白球的概率. .?


    答案:
    解析:

  • 第6题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第7题:

    一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是80/81,则袋中白球的个数是()。


    正确答案:4

  • 第8题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第9题:

    单选题
    一个袋子里有10个小球,其中4个白球,6个黑球,无放回地每次抽取1个,则第二次取到白球的概率是多少?(  )
    A

    2/15

    B

    4/15

    C

    1/5

    D

    2/5


    正确答案: D
    解析:
    可分成两种情况:①第一次取到白球,第二次也取到白球的概率是:4/10×3/9=12/90;②第一次取到黑球,第二次取到白球的概率是:6/10×4/9=24/90,即第二次取到白球的概率为24/90+12/90=2/5。

  • 第10题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第11题:

    单选题
    袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().
    A

    3/5

    B

    3/4

    C

    1/2

    D

    3/10


    正确答案: D
    解析: 根据古典概率的定义可以得知

  • 第12题:

    一个袋子里放有10个小球(其中4个白球,6个黑球),无放回地每次抽取1个,则第二次取到白球的概率是( )

    A. 2/15
    B. 4/15
    C. 1/5
    D. 2/5

    答案:D
    解析:
    解题指导: 第一次取到白球,第二次取到白球的机率为4/10*3/9=2/15 ;第一次取到黑球,第二次取到白球的机率为6/10*4/9=4/15 。可知,第二次取到白球的机率为4/15+2/15=2/5,故答案为D。

  • 第13题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第14题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第15题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第16题:

    一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。每次取出1个球,求最多取到3个白球的概率。


    答案:
    解析:

  • 第17题:

    袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().

    • A、3/5
    • B、3/4
    • C、1/2
    • D、3/10

    正确答案:A

  • 第18题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第19题:

    袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。


    正确答案:0.39*0.7

  • 第20题:

    填空题
    一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为____。

    正确答案: 2/5
    解析:
    设A:“第一个人取红球”,B:“第二个人取红球”,则
    P(B)=P[B(A∪A(_))]=P(AB)+P(A(_)B)=P(B|A)P(A)+P(B|A(_))P(A(_))=(19/49)×(20/50)+(20/49)×(30/50)=2/5

  • 第21题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析