itgle.com
更多“一个布袋中装有大小相同的3个白球、4个红球和2个黑球,每次从袋中摸出一球不再放回。问恰好在第3次取得黑球的概率是多少? ”相关问题
  • 第1题:

    一个袋内装有10个球,其中有3个白球,5个红球,2个黑球采取不放回抽样,每次取1件,则第二次取到的是白球的概率是()

    A、0.6

    B、0.5

    C、0.4

    D、0.3


    参考答案:D


  • 第2题:

    袋中装有大小相同的12个球,其中5个白球和7个黑球,从中任取3个球,求
    这3个球中至少有1个黑球的概率.


    答案:
    解析:
    此题利用对立事件的概率计算较为简捷,

  • 第3题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第4题:

    一个袋子里面有10个球,包括红球、白球和黑球。已知从袋中任意摸一个球,得到黑球 的概率是2/5,从袋中任意摸两个球,至少有一个是白球的概率是7/9,问袋子里有多少个红球?

    a.l b.2 c.3 d.4


    答案:A
    解析:

  • 第5题:

    袋子中有70个红球,30个黑球,从袋中任意摸出一个球,观察颜色后放回袋中,再摸第二个球,观察颜色后也放回袋中。

    (1)求两次摸球均为红球的概率;(3分)

    (2)求两次摸球颜色不同的概率。(4分)


    答案:
    解析:
    本题主要考查的是熟练运用分步法、分类法等方法求概率。

    通过不同事件随机发生概率进行分步分类计算。

  • 第6题:

    袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为( )。
    A.3/8
    B.
    C.
    D.


    答案:D
    解析:
    个黑球里任取一个,有5种情况。

  • 第7题:

    一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )


    答案:D
    解析:

  • 第8题:

    一个口袋中有7个红球3个白球,从袋中任取一任球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设A、B分别表示第一、二次红球,则有P(AB)=P(A)P(B|A=7/106/9=7/15。

  • 第9题:

    布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是。()

    • A、1/5
    • B、1/6
    • C、1/2
    • D、1/3。

    正确答案:D

  • 第10题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第11题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是(  ).
    A

    摸出的三个球中至少有一个球是黑球

    B

    摸出的三个球中至少有一个球是白球

    C

    摸出的三个球中至少有两个球是黑球

    D

    摸出的三个球中至少有两个球是白球


    正确答案: A
    解析:
    因为白球只有2个,所以,摸出三个球中,黑球至少有一个.

  • 第13题:

    甲袋有白球3只,红球7只,黑球l5只。乙袋有白球10只,红球6只,黑球9只。现从两袋中各取一个,试求两球颜色相同的概率约为( )。

    A.0.17

    B.0.33

    C.0.45

    D.0.8


    正确答案:B

  • 第14题:

    袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数。①求②求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第15题:

    甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是( )



    答案:C
    解析:
    【考情点拨】本题主要考查的知识点为相互独立事件同时发生的概率. 【应试指导】由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率

  • 第16题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第17题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第18题:

    袋子中有70个红球,30个黑球,从袋子中连续摸球两次,每次摸一个球,且第一次摸出的球,不放回袋中:
    (1)求两次摸球均为红球的概率:
    (2)若第一次摸到红球,求第二次摸到黑球的概率。


    答案:
    解析:
    平面π的法向量为n=(3,-1,2);

  • 第19题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第20题:

    一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是__________。


    答案:
    解析:

  • 第21题:

    一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是80/81,则袋中白球的个数是()。


    正确答案:4

  • 第22题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第23题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。