itgle.com
更多“袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为( )。 ”相关问题
  • 第1题:

    袋中有4个黑球,3个白球,大小、形状相同;一次随机摸出4个球,其中恰有3个白球的概率为4/35。()

    此题为判断题(对,错)。


    参考答案:正确

  • 第2题:

    袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( )。

    A.

    B.(3/8)3x(5/8)

    C.(3/8)3x(5/8)

    D.3/8


    参考答案:A

  • 第3题:

    袋中装有大小相同的12个球,其中5个白球和7个黑球,从中任取3个球,求
    这3个球中至少有1个黑球的概率.


    答案:
    解析:
    此题利用对立事件的概率计算较为简捷,

  • 第4题:

    袋子中有若干黑球和白球。若取出一个黑球,则袋中黑球占总球数的



    ;若取出两个白球,则袋中白球占



    。从原来袋中抽出3个球,其中有且仅有1个黑球的概率:

    A.低于20%
    B.在20%—40%之间
    C.在40%—60%之间
    D.高于60%

    答案:C
    解析:
    第一步,本题考查概率问题,用方程法解题。

  • 第5题:

    甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是( )



    答案:C
    解析:
    【考情点拨】本题主要考查的知识点为相互独立事件同时发生的概率. 【应试指导】由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率

  • 第6题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第7题:

    一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是__________。


    答案:
    解析:

  • 第8题:

    布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是。()

    • A、1/5
    • B、1/6
    • C、1/2
    • D、1/3。

    正确答案:D

  • 第9题:

    一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是80/81,则袋中白球的个数是()。


    正确答案:4

  • 第10题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第11题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是(  ).
    A

    摸出的三个球中至少有一个球是黑球

    B

    摸出的三个球中至少有一个球是白球

    C

    摸出的三个球中至少有两个球是黑球

    D

    摸出的三个球中至少有两个球是白球


    正确答案: A
    解析:
    因为白球只有2个,所以,摸出三个球中,黑球至少有一个.

  • 第13题:

    袋中有5个白球和3个黑球,从中任取两球,则取得的两球颜色相同的概率为13/28。()


    正确答案:对

  • 第14题:

    袋中有5个大小相同的球,其中3个是白球,2个是红球,一次随机地取出3个球,其中恰有2个是白球的概率是:


    答案:D
    解析:

  • 第15题:

    袋子中有若干黑球和白球。若取出一个黑球,则袋中黑球占总球数的 2/7;若取出两个白球,则袋中白球占 2/3。从原来袋中抽出3个球,其中有且仅有1个黑球的概率:

    A.低于20%
    B.在20%—40%之间
    C.在40%—60%之间
    D.高于60%

    答案:C
    解析:
    第一步,本题考查概率问题,用方程法解题。

  • 第16题:

    一个布袋中装有大小相同的3个白球、4个红球和2个黑球,每次从袋中摸出一球不再放回。问恰好在第3次取得黑球的概率是多少?


    答案:A
    解析:

  • 第17题:

    一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.


    答案:
    解析:

  • 第18题:

    一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )


    答案:D
    解析:

  • 第19题:

    袋中有白球5只,黑球6只,连续摸出3只球,则顺序为“黑白黑”的概率为().

    • A、1/11
    • B、2/33
    • C、4/33
    • D、5/33

    正确答案:D

  • 第20题:

    袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为()。


    正确答案:4/7

  • 第21题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第22题:

    单选题
    袋中有白球5只,黑球6只,连续摸出3只球,则顺序为“黑白黑”的概率为().
    A

    1/11

    B

    2/33

    C

    4/33

    D

    5/33


    正确答案: D
    解析: 6/11*5/10*5/9=5/33

  • 第23题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。