itgle.com
更多“口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是______.”相关问题
  • 第1题:

    有关C语言的问题

    口袋中有红、黄、蓝、白、黑五种颜色的球若干,每次从口袋中取出3个球。问得到三种不同颜色球的可能选取方法,打印出三种颜色的各种组合。


    循环遍历即可。if (i != j && j !=k && k!=i) -- 三种不同颜色的条件#include <stdio.h>#include <stdlib.h>void main(){int i,j,k,n=0;char c[5][7]={"red","yellow","blue","white","black"};for (i=0;i<5;i++)for (j=i+1;j<5;j++)for (k=j+1;k<5;k++){ if (i != j && j !=k && k!=i) printf("%s %s %s\n",c[i],c[j],c[k]); n++;};printf("n=%d",n);}得:red yellow bluered yellow whitered yellow blackred blue whitered blue blackred white blackyellow blue whiteyellow blue blackyellow white blackblue white blackn=10

  • 第2题:

    (3)一个口袋内装有除颜色外其他都相同的6个白球和4个红球,从中任意摸出2个,求:A、2个都是白球的概率;B、2个都是红球的概率;C、一个白球,一个红球的概率。


    正确答案:
              

  • 第3题:

    一个口袋内有4个不同的红球,6个不同的白球.
    (1)从中任取4个球,红球的个数不比白球少的取法有多少种?
    (2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?


    答案:
    解析:
    解:(1)由题意知本题是一个分类计数问题.将取出4个球分成三类情况:取4个红

  • 第4题:

    袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是________.


    答案:
    解析:
    一般理解随机事件“第二个人取得黄球”与第一个人取得的是什么球有关,这就要用全概率公式来计算,但也可以用古典型概率来解,这会简单得多.(方法一)设事件Ai表示第i个人取得黄球,i=1,2,则根据全概率公式:

    (方法二)只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到,而取到黄球的可能有20个,故所求概率为

  • 第5题:

    有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.


    答案:
    解析:

  • 第6题:

    一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )

    A.2.5;
    B.3.5;
    C.3.8;
    D.以上都不对

    答案:C
    解析:

  • 第7题:

    一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )


    答案:D
    解析:

  • 第8题:

    一个口袋中有7个红球3个白球,从袋中任取一任球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设A、B分别表示第一、二次红球,则有P(AB)=P(A)P(B|A=7/106/9=7/15。

  • 第9题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第10题:

    单选题
    一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外其他都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是(  ).
    A

    m=4,n=6

    B

    m=5,n=5

    C

    m+n=5

    D

    m+n=10


    正确答案: B
    解析:
    因为从中任取一个球,取得白球的概率与不是白球的概率相同.所以白球的个数与不是白球的球的个数相等,所以m+n=10.

  • 第11题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().
    A

    21/90.

    B

    21/45

    C

    21/100

    D

    21/50


    正确答案: C
    解析: 暂无解析

  • 第13题:

    一口袋装有6只球,其中4只白球、2只红球。从袋中取球两次,每次随机地取一只。采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率()

    A、4/9

    B、1/15

    C、14/15

    D、5/9


    参考答案:C

  • 第14题:

    一位乒乓球学员手中拿着装有7只乒乓球的不透明口袋,其中3只黄球,4只白球。他随机取出一只乒乓球,观察颜色后放回袋中,同时放入2只与取出的球同色的球,这样连续取2次,则他取出的两只球中第1次取出的是白球,第2次取出的是黄球的概率是

    A.8/77
    B.4/21
    C.2/11
    D.4/7

    答案:B
    解析:
    第一步,第一次取出白球的概率为4/7。第二步,由题意取出白球后会再放入2个白球,球的总数为9。第二次取出黄球的概率为3/9=1/3,故第一次取出白球,第二次取出黄球的概率为4/7×1/3=4/21。因此,选择B选项。

  • 第15题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第16题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第17题:

    从装有4个红球,4个白球的袋中任取4个球,则所取的4个球中包括两种不同颜色的球的概率是:
    A33/35
    B34/35
    C69/70
    D7/8


    答案:B
    解析:

  • 第18题:

    一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.


    答案:
    解析:

  • 第19题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第20题:

    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().

    • A、21/90.
    • B、21/45
    • C、21/100
    • D、21/50

    正确答案:B

  • 第21题:

    袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全相同的概率为()

    • A、1/9
    • B、1/3
    • C、5/9
    • D、8/9

    正确答案:A

  • 第22题:

    单选题
    从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  ).
    A

    至少有1个黑球与都是黑球

    B

    至少有1个黑球与至少有1个红球

    C

    恰有1个黑球与恰有2个黑球

    D

    至少有1个黑球与都是红球


    正确答案: C
    解析:
    A项,不互斥也不对立;B项,不互斥也不对立;C项,互斥而不对立;D项,互斥而且对立.

  • 第23题:

    单选题
    袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全相同的概率为()
    A

    1/9

    B

    1/3

    C

    5/9

    D

    8/9


    正确答案: D
    解析: 暂无解析