itgle.com

对边相等,对角相等的凸四边形,是平行四边形吧?方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N; 过C作CM⊥AD于M; 连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边

题目
对边相等,对角相等的凸四边形,是平行四边形吧?

方法①∠B小于90°;

左上为A,左下为B,右下为C,右上为D;

已知∠B=∠D;AB=CD;

证明:过A作AN⊥BC于N;

      过C作CM⊥AD于M;

      连接AC

∵AN⊥BC;CM⊥AD

∴∠ANB=∠DMC=90°

又∵∠B=∠D;AB=CD

∴△ANB=△DMC(AAS)

∴AN=CM;BN=DM

又∵∠ANB=∠DMC=90°,AC=AC

∴△ACD=△AMD(HL)

∴AM=DN

又∵BN=DM

∴BD=AC

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

方法②∠B大于90°

左上为A,左下为B,右下为C,右上为D;

已知∠B=∠D;AB=CD;

证明:延长CD,过A作AN⊥BC于N;

      延长AB,过C作CM⊥AD于M;

      连接AC

∵AN⊥BC;CM⊥AD

∴∠ANB=∠DMC=90°

又∵∠B=∠D;AB=CD

∴△ANB=△DMC(AAS)

∴AN=CM;BN=DM

又∵∠ANB=∠DMC=90°,AC=AC

∴△ACD=△AMD(HL)

∴AM=DN

又∵BN=DM

∴BD=AC

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

方法③∠B等于90°

证明:∵∠B=∠D=90°;AB=CD;AC=AC

∴△ABC=△ADC(HL)

∴AB=CB

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。


相似考题
参考答案和解析
是平行四边形
更多“对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△”相关问题
  • 第1题:

    测深量油尺油高读取顺序为()。

    A.m、dm、cm、mm

    B.m、mm、cm、dm

    C.mm、m、dm、cm

    D.mm、cm、dm、m


    参考答案:D

  • 第2题:

    六边形ABCDEF中,AB∥ED,AF∥CD,BC∥FE,且AB=ED,AF=CD,BC=EF。又FD⊥BD,FD=24cm,BD=18cm,则六边形ABCDEF的面积为()。

    A.432cm2B. 368cm2 C. 216cm2D.以上A、B、C均不正确


    过B点作BG⊥LBD,过F点作FG⊥FD交于G点,连接AG.据已知,则有AGB≌EFD,AGF≌CBD.此时,相当于把EFD平移到AGB,把CBD平移到AGF,则矩形BDFG的面积等于六边形ABCDEF的面积,应为24×l8=432(cm2)。故正确答案为A.

  • 第3题:

    ABC中,AB=13cmBC=10cmBC边上的中线AD=12cm.AC  

  • 第4题:

    锐角三角形ABC中,sinA=√5/5,D为BC边上的点,若△ABD 和△ACD的面积分别为2和4,过D作DE ⊥AB于E,DF⊥AC于F,


    答案:
    解析:

  • 第5题:

    如右图,在直角梯形ABCD中,AB,∥CD,AD⊥CD,AB=1cm,AD=6cm,CD=9cm,则BC=________cm.



    答案:
    解析:

  • 第6题:

    如图,Rt△ABC中,∠ABC=90o,AB=28 cm,以AB为直径的半圆与AC相交,图中的阴影部分①的面积比⑦的面积少28.28 cm2,求BC的长(π取3.14)。


    答案:
    解析:

  • 第7题:

    如图所示,梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18。问EF的长度为多少?


    A. 8.5
    B. 9
    C. 9.5
    D. 10

    答案:B
    解析:
    解题指导: 18*BF/BD=6*DF/BD, BF/DF=1:3, OF/CD=1:4, OE/CD=1:4, EF=CD/2=9,故答案为B。

  • 第8题:

    下图为以AC、AD和AF为直径画成的三个圆形,已知AB、BC、CD、DE和EF之间的距离彼此相等。问小圆x、弯月y以及弯月z三部分的面积之比为:

    A.4:5:16
    B.4:5:14
    C.4:7:12
    D.4:3:10

    答案:A
    解析:
    第一步,本题考查几何问题,属于平面几何类。
    第二步,赋值AB=2,由AB、BC、CD、DE、EF之间的距离相等,可得AC=4、AD=6、AF=10。则小圆、中圆、大圆的半径分别为2、3、5。
    第三步,小圆x、弯月y以及弯月z的面积分别为4π、9π-4π=5π、25π-9π=16π,故三部分的面积之比为4∶5∶16。

  • 第9题:

    如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )。


    A.49/4
    B.21
    C.
    D.20


    答案:D
    解析:

  • 第10题:

    测深量油尺油高读取顺序为()。

    • A、m、dm、cm、mm
    • B、m、mm、cm、dm
    • C、mm、m、dm、cm
    • D、mm、cm、dm、m

    正确答案:D

  • 第11题:

    I earn dollars()hour as()supermarket cashier on Saturdays.

    • A、a;an  
    • B、the;a  
    • C、an;a  
    • D、an;the

    正确答案:C

  • 第12题:

    铰链四杆机构ABCD,如果以BC为机架(静件),当机构为双曲柄机构时,各杆的长度可为()。

    • A、AB=130 BC=150 CD=175 AD=200
    • B、AB=150 BC=130 CD=165 AD=200
    • C、AB=175 BC=130 CD=185 AD=200
    • D、AB=200 BC=150 CD=165 AD=130

    正确答案:C

  • 第13题:

    ______ elephant is much heavier than ______ zebra.

    A、a,an

    B、an,a

    C、the,a

    D、the,an


    参考答案: B

  • 第14题:

    在 △ABC中,∠C=90°,AB=10。(1)∠A=30°,求BCAC(精确到0.01);(2)∠A=45°,求BCAC(精确到0.01)。

  • 第15题:

    试证明如下逻辑函数等式。(1) AB-+AB-C=AB-;(2) AB(C+C-)+AC=AB+AC;(3) A(BC+BC)+AC=A(BC)+AC


    答案:(1)左边=AB-+AB-C=AB-(1+C)=AB-=右边(2)左边=AB(C+C-)+AC=AB+AC=右边(3)左边=A(BC+BC)+AC=A(BC)+AC=右边

  • 第16题:

    在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.


    答案:
    解析:

  • 第17题:

    如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.

    (1)求证:AB=BC;
    (2)当BE⊥AD于E时,试证明:BE=AE+CD.


    答案:
    解析:



  • 第18题:

    如图⊙O和⊙O’相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明:

    (1)AC?BD=AD?AB;
    (2)AC=AE.


    答案:
    解析:


  • 第19题:

    如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )cm2。




    答案:D
    解析:
    第一步,本题考查几何问题,用割补平移法解题。
    第二步,作BA和CD的延长线交于E,如图所示,得到三角形EBC和ADE。容易知道所求四边形ABCD面积等于△EBC面积减去△ADE面积。由题意∠DAB=135°,∠ABC=∠ADC=90°,可以求得∠DCB=360°-135°-90°×2=45°,且∠BEC=∠EAD=45°,所以△EBC和△ADE都是等腰直角三角形。
    第三步,因为AD长3cm,BC长7cm,则BE=BC=7cm,DE=AD=3cm,所以


  • 第20题:

    在三角形ABC,AB=4,AC=6,BC=8,D为BC的中点,则AD=




    答案:B
    解析:

  • 第21题:

    如图1,在△ABC中,BC = 8 cm,AB的垂直平分线交AB于点D, 交边AC于点E,△BCE的周长等于18 cm,则AC的长等于( )

    A、6cm 
    B、8cm
    C、10cm  
    D、12cm

    答案:C
    解析:

  • 第22题:

    所有对接接头为()接头。

    • A、AC类
    • B、AD类
    • C、BC类
    • D、AB类

    正确答案:D

  • 第23题:

    已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1和S2,则S1+S2的值等于4π。


    正确答案:错误