itgle.com
更多“设P是m阶可逆矩阵,矩阵A、B是m行n列矩阵,若PA=B,则说明A与B行等价。”相关问题
  • 第1题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第2题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第3题:

    设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,
    若矩阵Q=(a1,a2,a3),则Q-1AQ=


    答案:B
    解析:
    提示:当P-1AP=Λ时,P=(a1,a2,a3)中a1,a2,a3的排列满足对应关系,a1对应λ1,a2对应λ2,a3对应λ3,可知a1对应特征值λ1=1,a2对应特征值λ2=2,a3对应特征值λ3=0,由此可

  • 第4题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第5题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第6题:

    设A是m×n阶矩阵,若A^TA=O,证明:A=0.


    答案:
    解析:
    【证明】因为r(A)=r(A^TA),而A^TA=O,所以r(A)=0,于是A=O.

  • 第7题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第8题:

    设A是m阶矩阵,B是n阶矩阵,行列式等于( )。


    答案:D
    解析:

  • 第9题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第10题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第11题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<r1

    C

    r=r1

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第12题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第13题:

    设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


    A.矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的行向量组与矩阵B的列向量组等价


    答案:B
    解析:

  • 第14题:

    设n阶矩阵A与B等价, 则必须


    答案:D
    解析:

  • 第15题:

    设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,分别为A,B的伴随矩阵,则(  )。

    A.交换A的第1列与第2列得B
    B.交换A的第1行与第2行得B
    C.交换A的第1列与第2列得-B
    D.交换A的第1行与第2行得-B

    答案:C
    解析:

  • 第16题:

    设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


    答案:
    解析:

  • 第17题:

    设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。


    答案:
    解析:


  • 第18题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第19题:

    设A是一个m×n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。


    答案:
    解析:
    本题主要考查向量在空间中的应用。

    利用空间向量的基本性质和关系,结合线性相关的知识即可。

  • 第20题:

    设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。


    答案:B
    解析:
    提示:由条件知,λ1=1,λ2=2,λ3=0是矩阵A的特征值,而α1,α2,α3是对应的特征向量,故有

  • 第21题:

    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。

    • A、等价
    • B、相似
    • C、合同
    • D、正交

    正确答案:B

  • 第22题:

    单选题
    设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。
    A

    等价

    B

    相似

    C

    合同

    D

    正交


    正确答案: B
    解析: 由相似矩阵的定义知B正确。故选B。

  • 第23题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.