itgle.com
参考答案和解析
B
更多“若x*是f(x)=0的重根,则牛顿不收敛。”相关问题
  • 第1题:

    解非线性方程f(x)=0的牛顿迭代法在重根附近()

    A、线性收敛

    B、三次收敛

    C、平方收敛

    D、不收敛


    参考答案:A

  • 第2题:

    设求方程f(x)=0的根的牛顿法收敛,则它具有()敛速。

    A、超线性

    B、平方

    C、线性

    D、三次


    参考答案:C

  • 第3题:

    下列命题中,哪个是正确的?

    A.周期函数f(x)的傅立叶级数收敛于f(x)
    B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)
    C.若正项级数收敛,则必收敛
    D.正项级数收敛的充分且必-条件是级数的部分和数列有界

    答案:D
    解析:
    提示:本题先从熟悉的结论着手考虑,逐一分析每一个结论。选项D是正项级数的基本定理,因而正确,其余选项均错误。选项A,只在函数的连续点处级数收敛于f(x);选项B,级数收敛,还需判定;选项C,可通过举反例说明,级数收敛,但发散。

  • 第4题:

    若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。

    A.f′(x)<0,f″(x)<0
    B.f′(x)<0,f″(x)>0
    C.f′(x)>0,f″(x)<0
    D.f′(x)>0,f″(x)>0

    答案:A
    解析:
    已知在给出的(0,+∞)内,f′(x)>0,f″(x)<0,故在(0,+∞)上f(x)单调递增,且图形是凸的,再根据已知条件f(-x)=f(x)可知f(x)是偶函数,利用图形的对称性可得出f(x)在(-∞,0)是单调递减且也是凸的。故应该选择A。

  • 第5题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第6题:

    下列命题中正确的为()

    A.若xo为f(x)的极值点,则必有,f'(xo)=0
    B.若f'(xo)=0,则点xo必为f(x)的极值点
    C.若f'(xo)≠0,则点xo必定不为f(x)的极值点
    D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0

    答案:D
    解析:
    由极值的必要条件知D正确.Y=|x|在x=0处取得极值,但不可导,知A与C不正确.y=x3在xo=0处导数为0,但Xo=0不为它的极值点,可知B不正确.因此选D.

  • 第7题:

    若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。


    正确答案:正确

  • 第8题:

    若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().

    • A、只有一个根
    • B、至少有一个根
    • C、没有根
    • D、以上结论都不对

    正确答案:B

  • 第9题:

    判断题
    若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第10题:

    单选题
    设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。
    A

    若fx′(x0,y0)=0,则fy′(x0,y0)=0

    B

    若fx′(x0,y0)=0,则fy′(x0,y0)≠0

    C

    若fx′(x0,y0)≠0,则fy′(x0,y0)=0

    D

    若fx′(x0,y0)≠0,则fy′(x0,y0)≠0


    正确答案: A
    解析:
    设z=f(x,y)=f(x,y(x)),由题意可知∂z/∂x=fx′+fy′·(dy/dx)=0。
    又φ(x,y)=0,则dy/dx=-φx′/φy′。故fx′-(φx′/φy′)fy′=0。又φy′≠0,则fx′φy′=φx′fy′。所以当fx′≠0时fy′≠0。

  • 第11题:

    单选题
    若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]
    A

    f′(x)>0,f″(x)<0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)>0

    D

    f′(x)<0,f″(x)<0


    正确答案: C
    解析:
    由f(-x)=-f(x)(-∞<x<+∞),知f(x)为奇函数,奇函数关于原点对称。根据奇函数图形,故在(0,+∞)内,f′(x)>0,f″(x)>0。

  • 第12题:

    单选题
    (2013)若f(-x)=-f(x)(-∞0,f″(x)<0,则f(x)在(0,+∞)内是:()
    A

    f′(x)>0,f″(x)<0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)>0

    D

    f′(x)<0,f″(x)<0


    正确答案: C
    解析: 暂无解析

  • 第13题:

    设求方程f(x)=0的根的牛顿法收敛,则它具有()收敛。

    A、超线性

    B、平方

    C、线性

    D、三次


    参考答案:C

  • 第14题:

    设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x)=f(x),求导-f'(-x)=f'(x),即f'(-x)=-f'(x)。将x=x0代入,得f'(-x0)=-f'(x0),解出f'(x0)=K。

  • 第15题:

    下列命题正确的是().

    A若|f(x)|在x=a处连续,则f(x)在x=a处连续
    B若f(x)在x=a处连续,则|f(x)|在x=a处连续
    C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续
    D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续


    答案:B
    解析:

  • 第16题:

    下列命题中,哪个是正确的?
    A.周期函数f(x)的傅立叶级数收敛于f (x)
    B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)

    D.正项级数收敛的充分且“条件是级数的部分和数列有界


    答案:D
    解析:
    提示:本题先从熟悉的结论着手考虑,逐一分析每一个结论。选项D是正项级数的基本定理,因而正确,其余选项均错误。选项A,只在函数的连续点处级数收敛于f(x);选项B,级

  • 第17题:

    若函数f(x)满足方程f"(x)+f'(x)-2f(x)=0及f"(x)+f(x)=2e……x,则f(x)=________.


    答案:1、e^x.
    解析:

  • 第18题:

    用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

    • A、f(x0)f″(x)>0
    • B、f(x0)f′(x)>0
    • C、f(x0)f″(x)<0
    • D、f(x0)f′(x)<0

    正确答案:A

  • 第19题:

    解非线性方程f(x)=0的牛顿迭代法具有()收敛。


    正确答案:局部平方

  • 第20题:

    单选题
    用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。
    A

    f(x0)f″(x)>0

    B

    f(x0)f′(x)>0

    C

    f(x0)f″(x)<0

    D

    f(x0)f′(x)<0


    正确答案: A
    解析: 暂无解析

  • 第21题:

    填空题
    解非线性方程f(x)=0的牛顿迭代法具有()收敛。

    正确答案: 局部平方
    解析: 暂无解析

  • 第22题:

    单选题
    下列说法中正确的是(  )。[2014年真题]
    A

    若f′(x0)=0,则f(x0)必须是f(x)的极值

    B

    若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0

    C

    若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件

    D

    若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件


    正确答案: B
    解析:
    当f(x0)在点x0处可导时,若f(x)在x0处取得极值,则可知f′(x0)=0;若f′(x0)=0,f(x)在点x0未必取得极值,例如f(x)=x3在点x=0处有f′(0)=0,但x3在实数域内不存在极值点。

  • 第23题:

    单选题
    设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是(  )。
    A

    若{xn}收敛,则{f(xn)}收敛

    B

    若{xn}单调,则{f(xn)}收敛

    C

    若{f(xn)}收敛,则{xn}收敛

    D

    若{f(xn)}单调,则{xn}收敛


    正确答案: A
    解析:
    由题意知,若{xn}单调,则{f(xn)}单调有界,则{f(xn)}一定存在极限,即{f(xn)}收敛。

  • 第24题:

    单选题
    设求方程f(x)=0的根的牛顿法收敛,则它具有()敛速。
    A

    超线性

    B

    平方

    C

    线性

    D

    三次


    正确答案: D
    解析: 暂无解析