itgle.com
更多“设向量α与向量β的夹角θ=π/3,模|α|=1,|β|=2,则模|α+β|等于(  ) ”相关问题
  • 第1题:

    设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3)且与c=(2,-1,1)的数量积为-6,则向量x=( )。

    A.(-3,3,3)
    B.(-3,1,1)
    C.(0,6,0)
    D.(0,3,-3)

    答案:A
    解析:
    由题意可得,x//a×b,而a×b=(2,3,-1)×(1,﹣2,3)=(7,﹣7,﹣7)=7(1,﹣1,﹣1),所以x=(x,﹣x,﹣x)。再由-6=x·c=(x,-x,-x)·(2,-1,1)=2x得x=-3,所以x=(-3,3,3)。

  • 第2题:

    设a1,a2,3向量组线性无关,则下列向量组线性相关的是( )


    答案:A
    解析:

  • 第3题:

    设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=( )。

    A.0
    B.
    C.
    D.

    答案:C
    解析:

  • 第4题:

    已知|a|=1,|b|=6,a?(b-a)=2,则向量a与b的夹角是(  ).


    答案:C
    解析:

  • 第5题:

    设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.


    答案:1、2.
    解析:
    因(Aα1,Aα2,Aα3)=A(α1,α2,α3),又α,α,α是三维线性无关列向量,所以(α1,α2,α3)为三阶可逆矩阵故r(Aα1,Aα2,Aα3)=r(A)=2.

  • 第6题:

    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().

    • A、1
    • B、-2
    • C、1或-2
    • D、任意数

    正确答案:B

  • 第7题:

    设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().

    • A、3
    • B、5
    • C、7
    • D、不能确定

    正确答案:B

  • 第8题:

    单选题
    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
    A

    1

    B

    -2

    C

    1或-2

    D

    任意数


    正确答案: D
    解析: 暂无解析

  • 第9题:

    单选题
    设向量x垂直于向量a=(2,3,-1)和b=(1,-2,3),且与c=(2,-1,1)的数量积为-6,则向量x=(  )。
    A

    (-3,3,3)

    B

    (-3,1,1)

    C

    (0,6,0)

    D

    (0,3,-3)


    正确答案: B
    解析:
    由题意可得,x∥a×b,而a×b=(2,3,-1)×(1,-2,3)=(7,-7,-7)=7(1,-1,-1),所以x=k(1,-1,-1)。再由x•c=2k+k-k=2k=-6,得k=-3,所以x=(-3,3,3)。

  • 第10题:

    单选题
    设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().
    A

    3

    B

    5

    C

    7

    D

    不能确定


    正确答案: C
    解析: 暂无解析

  • 第11题:

    设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第12题:

    设向量组A:a1=(1,-1,0),a2=(2,1,t),a3=(0,1,1)线性相关,则t等于( ).

    A.1
    B.2
    C.3
    D.0

    答案:C
    解析:

  • 第13题:

    设随机向量(X,Y)的联合分布律为

    则a的值等于(  )。

    A.1/3
    B.2/3
    C.1/4
    D.3/4

    答案:A
    解析:

  • 第14题:

    设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.


    答案:
    解析:

  • 第15题:

    设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。

    A.若向量组I线性无关.则r≤S
    B.若向量组I线性相关,则r>s
    C.若向量组Ⅱ线性无关,则r≤s
    D.若向量组Ⅱ线性相关,则r>s

    答案:A
    解析:
    由于向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即

  • 第16题:

    设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。

    • A、1
    • B、2
    • C、3
    • D、0

    正确答案:C

  • 第17题:

    单选题
    设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
    A

    向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

    B

    向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

    C

    向量组α1,…,αm与向量组β1,…,βm等价

    D

    矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


    正确答案: C
    解析:
    例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关.

  • 第18题:

    单选题
    设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。
    A

    向量组(Ⅰ)与(Ⅱ)都线性相关

    B

    向量组(Ⅰ)线性相关

    C

    向量组(Ⅱ)线性相关

    D

    向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关


    正确答案: D
    解析:
    由向量组(Ⅲ)线性相关,知矩阵AB不可逆,即|AB|=|A|·|B|=0,因此|A|、|B|中至少有一个为0,即A与B中至少有一个不可逆,故向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关。

  • 第19题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。