itgle.com

质量为m1的均质杆OA,一端铰接在质量为m2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动(如图所示)。圆心速度为v,则系统的动能为:

题目
质量为m1的均质杆OA,一端铰接在质量为m2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动(如图所示)。圆心速度为v,则系统的动能为:



相似考题
更多“质量为m1的均质杆OA,一端铰接在质量为m2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动(如图所示)。圆心速度为v,则系统的动能为: ”相关问题
  • 第1题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第2题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘圆心,盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:



    答案:D
    解析:
    此为定轴转动刚体,动能表达式为,其中Jc为刚体通过质心且垂直于运动平面
    的轴的转动惯量。
    此题中,,带入动能表达式,选(D)。

  • 第3题:

    一半径为r的圆盘以匀角速ω在半径为R的圆形曲面上作纯滚动(如图所示), 则圆盘边缘上图示M点加速度aM的大小为:



    答案:B
    解析:

  • 第4题:

    半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图示。α=45o,且知B点速度大小为vB,则圆轮的动能为:


    A. mvB2/16
    B. 3mvB2/16
    C. mvB2/4
    D. 3mvB2/4

    答案:B
    解析:
    提示:根据vA与vB先求出瞬心位置,然后可求ω。

  • 第5题:

    如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。

    A.0.5
    B.1.0
    C.1.5
    D.2.0

    答案:B
    解析:
    图示瞬时,点A和点B的速度方向均沿水平方向, AB杆作平动,圆轮B的轮心速度

  • 第6题:

    如图所示,两重物M1和M2的质量分别为m1和m2,两重物系在不计重量的软绳上,绳绕过均质定滑轮,滑轮半径r,质量为M,则此滑轮系统的动量为:



    答案:B
    解析:
    提示:根据动量的定义p=∑mivi。

  • 第7题:

    均质杆OA长L,可在铅直平面内绕水平固定轴O转动。开始杆处在如图所示的稳定平衡位置。今欲使此杆转过1/4转而转到水平位置,应给予杆的另一端A点的速度vA的大小为:



    答案:D
    解析:
    提示:应用动能定理,T2 - T1 = W12。

  • 第8题:

    均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:


    答案:D
    解析:

  • 第9题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:



    答案:C
    解析:
    提示:动量 p=∑mivci=(2m?lω+m?2lω)j。

  • 第10题:

    均质细直杆长为l,质量为m,图示瞬时点A处的速度为v,则杆AB的动量大小为:


    答案:D
    解析:
    提示 动量的大小等于杆AB的质量乘以其质心速度的大小。

  • 第11题:

    如图4-72所示,质量为m1的均质杆OA, 一端较接在质量为m2的均质圆盘中心, 另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为v,则系统的动能为( )。



    答案:D
    解析:
    提示:杆OA平行移动,轮O作平面运动,分别根据动能的定义求解。

  • 第12题:

    半径为R、质量为m的均质圆轮沿斜面做纯滾动如图所示。已知轮心C的速度为v、加速度为a,则该轮的动能为:



    答案:C
    解析:

  • 第13题:

    如图,半径为R的圆轮以匀角速度作纯滚动,带动AB杆绕B作定轴转动,D是轮与杆的接触点,如图所示。若取轮心C为动点,杆BA为动坐标系,则动点的牵连速度为(  )。


    答案:C
    解析:

  • 第14题:

    匀质杆OA质量为m,长为Z,角速度为ω,如图所示。则其动量大小为:


    答案:B
    解析:
    解动量的大小为mvc
    答案:B

  • 第15题:

    均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。




    答案:D
    解析:

  • 第16题:

    如图所示质量为m1的小车以速度v1在水平路面上缓慢行驶,若在小车上将一质量为m2的货物以相对于小车的速度v2水平抛出,不计地面阻力,则此时小车速度v的大小为(  )。


    答案:A
    解析:
    水平方向合外力为零,则系统在水平方向动量守恒,即(m1+m2)v1=m1v+m2(v-v2),从而可求得小车速度

  • 第17题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为:



    答案:A
    解析:
    提示:根据动量、动量矩、动能的定义,刚体做定轴转动时p=mvc, LO=JOω,T=1/2JOω2。

  • 第18题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第19题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第20题:

    如图所示,两重物M1和M2的质量分别为m1和m2,两重物系在不计重量的软绳上,绳绕过均质定滑轮,滑轮半径r,质量为M,则此滑轮系统对转轴O之动量矩为:



    答案:C
    解析:
    提示 根据动量矩定义和公式:LO= MO(m1v) + MO(m2v)+JO轮w。

  • 第21题:

    半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为V、加速度为a,则该轮的动能为( )。

    A. 1/2mv2 B. 3/2mv2 C. 3/4mv2 D. 1/4mv2


    答案:C
    解析:

  • 第22题:

    如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。