itgle.com
更多“设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:”相关问题
  • 第1题:

    已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:
    A.-K
    B.K
    C. -1/K
    D.1/K


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x) =f(x),求导-f'(-x)=f'(x),即f'(-x)=-f(x)。将x=x0代入,得f’(-x0) =-f‘(x0),解出f‘(x0)=K。

  • 第2题:

    设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.


    答案:
    解析:

  • 第3题:

    函数y=f(x)在点x=x0处取得极小值,则必有:

    A.f′(x0)=0
    B.f′′(x0)>0
    C. f′(x0)=0 且 f(xo)>0
    D.f′(x0)=0 或导数不存在

    答案:D
    解析:
    已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如 :y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第4题:

    设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x)=f(x),求导-f'(-x)=f'(x),即f'(-x)=-f'(x)。将x=x0代入,得f'(-x0)=-f'(x0),解出f'(x0)=K。

  • 第5题:

    若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。


    正确答案:错误

  • 第6题:

    设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。

    • A、g[f(x)]在x=x0处有极大值
    • B、g[f(x)]在x=x0处有极小值
    • C、g[f(x)]在x=x0处有最小值
    • D、g[f(x)]在x=x0既无极值也无最小值

    正确答案:B

  • 第7题:

    单选题
    已知函数y=f(x)对一切x满足,若f’(x0)=0(x0≠0),则().
    A

    f(x0)是f(x)的极大值

    B

    f(x0)是f(x)的极小值

    C

    (x0(x0))是曲线y=f(x)的拐点

    D

    f(x0)不是f(x)的极值,(x0(x0))也不是曲线y=f(x)的拐点


    正确答案: A
    解析: 暂无解析

  • 第8题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: D
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第9题:

    单选题
    y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。
    A

    在x0点取得极大值

    B

    在x0的某邻域单调增加

    C

    在x0点取得极小值

    D

    在x0的某邻域单调减少


    正确答案: D
    解析:
    由f′(x0)=0代入y″-2y′+4y=0可得y″(x0)=-4y(x0)<0。又f′(x0)=0,故函数y=f(x)在x0处取得极大值。

  • 第10题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    下列说法中正确的是(  )。[2014年真题]
    A

    若f′(x0)=0,则f(x0)必须是f(x)的极值

    B

    若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0

    C

    若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件

    D

    若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件


    正确答案: A
    解析:
    当f(x0)在点x0处可导时,若f(x)在x0处取得极值,则可知f′(x0)=0;若f′(x0)=0,而f′(x0)f′(x0)≥0时,则f(x)在x0处不能取得极值。因此,若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件。

  • 第12题:

    单选题
    设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则(  )。
    A

    x0必是f′(x)的驻点

    B

    (-x0,-f(x0))必是y=-f(-x)的拐点

    C

    (-x0,-f(x0))必是y=-f(x)的拐点

    D

    对∀x>x0与x<x0,y=f(x)的凸凹性相反


    正确答案: A
    解析:
    已知y=f(x)与y=-f(-x)的图像是关于原点对称的。那么由(x0,f(x0))是y=f(x)的拐点,就能推出(-x0,-f(x0))是y=-f(-x)的拐点。故选B项。

  • 第13题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第14题:

    设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?

    A.x=x0是f(x)的唯一驻点
    B.x=x0是f(x)的极大值点
    C.f"(x)在(-∞,+∞)恒为负值
    D.f"(x0)≠0

    答案:C
    解析:
    提示:f"(x)在(-∞,+∞)恒为负值,得出函数f(x)图形在(-∞,+∞)是向上凸,又知f'(x0)=0。故当x0时,f'(x)0)取得极大值。且f"(x)0)是f(x)的最大值。

  • 第15题:

    函数y=f(x) 在点x=x0处取得极小值,则必有:

    A. f'(x0)=0
    B.f''(x0)>0
    C. f'(x0)=0且f''(x0)>0
    D.f'(x0)=0或导数不存在

    答案:D
    解析:
    提示 已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第16题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第17题:

    设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?

    • A、x=x0是f(x)的唯一驻点
    • B、x=x0是f(x)的极大值点
    • C、f″(x)在(-∞,+∞)恒为负值
    • D、f″(x0)≠0

    正确答案:C

  • 第18题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第19题:

    单选题
    设f′(x0)=f″(x0)=0,f‴(x0)>0,且f(x)在x0点的某邻域内有三阶连续导数,则下列选项正确的是(  )。
    A

    f′(x0)是f′(x)的极大值

    B

    f(x0)是f(x)的极大值

    C

    f(x0)是f(x)的极小值

    D

    (x0,f(x0))是曲线y=f(x)的拐点


    正确答案: D
    解析:
    已知f‴(x0)>0,则f″(x)在x0点的某邻域内单调增加,又由f″(x0)=0,则在x0点的某邻域内f″(x0)与f″(x0)符号相反,故(x0,f(x0))是曲线y=f(x)的拐点。

  • 第20题:

    单选题
    设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处(  )。
    A

    取得极大值

    B

    某邻域内单调递增

    C

    某邻域内单调递减

    D

    取得极小值


    正确答案: B
    解析:
    因为y=f(x)是微分方程y″-2y′+4y=0的一个解,故对于x=x0,有f″(x0)-2f′(x0)+4f(x0)=0。又因为f′(x0)=0,f(x0)>0,可得f″(x0)<0,故函数在x=x0处取极大值。故应选(A)。

  • 第21题:

    单选题
    设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则(  )
    A

    x0不是f(x)g(x)的驻点

    B

    x0是f(x)g(x)的驻点,但不是它的极值点

    C

    x0是f(x)g(x)的驻点,且是它的极小值点

    D

    x0是f(x)g(x)的驻点,且是它的极大值点


    正确答案: A
    解析:
    构造函数φ(x)=f(x)·g(x),则φ′(x)=f′(x)·g(x)+f(x)g′(x),φ″(x)=f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)。
    又f(x0)=g(x0)=0,故φ′(x0)=0,x0是φ(x)的驻点。
    又因φ″(x0)=2f′(x0)g′(x0)>0,故φ(x)在x0取到极小值。

  • 第22题:

    单选题
    设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。
    A

    若fx′(x0,y0)=0,则fy′(x0,y0)=0

    B

    若fx′(x0,y0)=0,则fy′(x0,y0)≠0

    C

    若fx′(x0,y0)≠0,则fy′(x0,y0)=0

    D

    若fx′(x0,y0)≠0,则fy′(x0,y0)≠0


    正确答案: A
    解析:
    设z=f(x,y)=f(x,y(x)),由题意可知∂z/∂x=fx′+fy′·(dy/dx)=0。
    又φ(x,y)=0,则dy/dx=-φx′/φy′。故fx′-(φx′/φy′)fy′=0。又φy′≠0,则fx′φy′=φx′fy′。所以当fx′≠0时fy′≠0。

  • 第23题:

    单选题
    设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()
    A

    x=x0是f(x)的唯一驻点

    B

    x=x0是f(x)的极大值点

    C

    f″(x)在(-∞,+∞)恒为负值

    D

    f″(x)≠0


    正确答案: B
    解析: 暂无解析

  • 第24题:

    单选题
    设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?
    A

    x=x0是f(x)的唯一驻点

    B

    x=x0是f(x)的极大值点

    C

    f″(x)在(-∞,+∞)恒为负值

    D

    f″(x0)≠0


    正确答案: B
    解析: 暂无解析