itgle.com
参考答案和解析
答案:A
解析:
更多“设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( ) ”相关问题
  • 第1题:

    设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则

    A.当rB.当r>s时,向量组Ⅱ必线性相关
    C.当rD.当r>s时,向量组Ⅰ必线性相关

    答案:D
    解析:

  • 第2题:

    设A为n阶方阵,rank(A)=3

    A.任意3个行向量都是极大线性无关组
    B.至少有3个非零行向量
    C.必有4个行向量线性无关
    D.每个行向量可由其余n- 1个行向量线性表示

    答案:B
    解析:

  • 第3题:

    设n阶方阵M的秩r(M)=r
    A.任意一个行向量均可由其他r个行向量线性表示
    B.任意r个行向量均可组成极大线性无关组
    C.任意r个行向量均线性无关
    D.必有r个行向量线性无关

    答案:D
    解析:

  • 第4题:

    单选题
    设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
    A

    向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

    B

    向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

    C

    向量组α1,…,αm与向量组β1,…,βm等价

    D

    矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


    正确答案: C
    解析:
    例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关.

  • 第5题:

    单选题
    设A为4×5矩阵,且A的行向量组线性无关,则(  )。
    A

    A的列向量组线性无关

    B

    方程组AX()b()有无穷多解

    C

    方程组AX()b()的增广矩阵A(_)的任意四个列向量构成的向量组线性无关

    D

    A的任意4个列向量构成的向量组线性无关


    正确答案: B
    解析:
    方程组AX()b()的行向量组线性无关,则r(A)=4,而未知数的个数为5,故方程组中含有一个自由未知数,它有无穷多解。

  • 第6题:

    单选题
    设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。
    A

    A的列向量组线性无关

    B

    A的列向量组线性相关

    C

    A的行向量组线性无关

    D

    A的行向量组线性相关


    正确答案: C
    解析:
    因为AX()0()仅有零解的充分必要条件是A的秩r(A)=n,所以A的列向量组线性无关是AX()0()仅有零解的充分条件。

  • 第7题:

    单选题
    设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).
    A

    r<s时,向量组(Ⅱ)必线性相关

    B

    r>s时,向量组(Ⅱ)必线性相关

    C

    r<s时,向量组(Ⅰ)必线性相关

    D

    r>s时,向量组(Ⅰ)必线性相关


    正确答案: B
    解析:
    设向量组(Ⅰ)的秩为r1,向量组(Ⅱ)的秩为r2,由(Ⅰ)可由(Ⅱ)线性表示,知r1≤r2.又r2≤s,若r>s,故r>s≥r2≥r1,所以向量组(Ⅰ)必线性相关;若r<s,不能判定向量组(Ⅰ)和(Ⅱ)的线性相关性.

  • 第8题:

    单选题
    设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).
    A

    (Ⅰ)是(Ⅱ)的极大线性无关组

    B

    r(Ⅰ)=r(Ⅱ)

    C

    当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)

    D

    当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)


    正确答案: B
    解析:
    题设中只给出向量组(Ⅰ)是(Ⅱ)的部分线性无关组,则不能判定其为(Ⅱ)的极大线性无关组,也没有r(Ⅰ)=r(Ⅱ),若向量组(Ⅱ)可由(Ⅰ)线性表示,则向量组(Ⅰ)和(Ⅱ)等价,即r(Ⅰ)=r(Ⅱ).

  • 第9题:

    单选题
    设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。
    A

    A的列向量组线性相关,B的行向量组线性相关

    B

    A的列向量组线性相关,B的列向量组线性相关

    C

    A的行向量组线性相关,B的行向量组线性相关

    D

    A的行向量组线性相关,B的列向量组线性相关


    正确答案: D
    解析:
    设A为m×n矩阵,B为n×s矩阵,由AB=0()知r(A)+r(B)≤n,又r(A)≥1,r(B)≥1,因此r(A)<n,r(B)<n,说明A的列向量组线性相关,B的行向量组线性相关。

  • 第10题:

    设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.


    答案:
    解析:

  • 第11题:

    设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。

    A.若向量组I线性无关.则r≤S
    B.若向量组I线性相关,则r>s
    C.若向量组Ⅱ线性无关,则r≤s
    D.若向量组Ⅱ线性相关,则r>s

    答案:A
    解析:
    由于向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即

  • 第12题:


    A.(Ⅰ)是(Ⅱ)的极大线性无关组
    B.r(Ⅰ)=r(Ⅱ)
    C.当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)
    D.当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

    答案:D
    解析:
    题设中只给出向量组(Ⅰ)是(Ⅱ)的部分线性无关组,则不能判定其为(Ⅱ)的极大线性无关组,也没有r(Ⅰ)=r(Ⅱ),若向量组(Ⅱ)可由(Ⅰ)线性表示,则向量组(Ⅰ)和(Ⅱ)等价,即r(Ⅰ)=r(Ⅱ).

  • 第13题:

    单选题
    设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)m线性表示,但不能由向量组(Ⅰ):α(→)1,α(→)2,…,α(→)m-1线性表示。记向量组(Ⅱ):α(→)1,α(→)2,…,α(→)m-1,β(→),则(  )。
    A

    α()m不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    α()m不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    α()m可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    α()m可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示


    正确答案: B
    解析:
    向量β()可由向量组α()1α()2,…,α()m线性表示,不能由向量组α()1α()2,…,α()m1线性表示,则设β()=k1α()1+k2α()2+…+km1α()m1+kmα()m,且km≠0,α()mβ()/km-k1α()1/km-…-km1α()m1/km,说明α()m可由向量组β()α()1α()2,…,α()m1,线性表示,不可由向量组α()1α()2,…,α()m1线性表示。

  • 第14题:

    单选题
    设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
    A

    αm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示

    B

    αm不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示

    C

    αm可以由(Ⅰ)线性表示,也可由(Ⅱ)线性表示

    D

    αm可由(Ⅰ)线性表示,不可由(Ⅱ)线性表示


    正确答案: C
    解析:
    若αm可由向量组(Ⅰ)线性表示,则β也可由向量组(Ⅰ)线性表示,与题设矛盾,故αm不能由(Ⅰ)线性表示;由β可由α1,α2,…,αm线性表示,知存在一组数k1,k2,…,km,使β=k1α1+k2α2+…+kmαm,且km≠0,否则β就能由(Ⅰ)线性表示,所以αm可由向量组(Ⅱ).

  • 第15题:

    问答题
    设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)r线性表示,但不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示,证明:  (1)α(→)r不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示;  (2)α(→)r能由α(→)1,α(→)2,…,α(→)r,β(→)线性表示。

    正确答案:
    (1)(反证法)
    可设α()r能由向量组α()1,α()2,…,α()r-1线性表示,即α()r=k1α()1+k2α()2+…+kr-1α()r-1
    由向量β()可由向量组α()1,α()2,…,α()r线性表示,有β()=l1α()1+l2α()2+…+lr-1α()r-1+lrα()r
    所以有β()=(l1+lrk1)α()1+(l2+lrk2)α()2+…+(lr-1+lrkr-1)α()r-1,即β()可由向量组α()1,α()2,…,α()r-1线性表示,这与已知条件相矛盾,故α()r不能由向量组α()1,α()2,…,α()r-1线性表示。
    (2)由β()=l1α()1+l2α()2+…+lr-1α()r-1+lrα()r和β不能由向量组α()1,α()2,…,α()r-1线性表示,可知lr≠0,故α()r=β()/lr-l1α()1/lr-l2α()2/lr-…-lr-1α()r1/lr,即α()r可由向量组α()1,α()2,…,α()r-1线性表示。
    解析: 暂无解析

  • 第16题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第17题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。