itgle.com
参考答案和解析

1m³=1000000cm³,所以需要1000000个体积1cm³的小正方体。

1×1000000=1000000(cm)=10(km),即长10km。

更多“用体积是1cm³的小正方体木块,堆成一个体积是1m³的大正方体,需要多少个小正方体木块?如果把这些小 ”相关问题
  • 第1题:

    一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。

    A.490
    B.488
    C.484
    D.480

    答案:B
    解析:
    分析:没有涂色的小正方体都在大正方体的内部,由此先借助正方体的体积公式求出没有涂色的小正方体的个数即可解答.

    解答:解:没有涂色的小正方体:

    (10-2)×(10-2)×(10-2)=8×8×8=512(个),

    所以至少一面涂色的小正方体:1000-512=488(个)

  • 第2题:

    边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )



    答案:A
    解析:
    锯成64个边长为1的小正方体后,涂色的面有以下几种情况:涂3面的小正方体分别在大正方体的8个顶点处,共有8个;涂2面的小正方体分别是大正方体的每条棱的中间的2个,而大正方体共有12条棱,那么,涂2面的小正方体有2×12=24个;涂1面的小正方体分别是每个面的中间的4个,而大正方体共有6个面,那么,涂1面的小正方体有4×6=24个;6个面都没有涂色的小正方体有64-8-24-24=8个,则随机抽取一个小正方体,恰有两面为红色的概率是

  • 第3题:

    一个长方体木块恰能切割成五个正方体木块,五个正方体木块表面积之和比原来的长方体木块的表面积增加了200cm²。则长方体木块的体积为多少?

    A.625cm³

    B.125cm³

    C.500cm³

    D.750cm³


    B 【解析】切割后三个正方体木块表面积比原长方体多4个正方形切割面,则每个正方形切割面的面积为64÷4=16平方厘米,正方形边长为4厘米。长方体木块的体积=三个正方体木块的体积=3×4×4×4=192立方厘米

  • 第4题:

    将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的?

    A. 88
    B. 84
    C. 96
    D. 92

    答案:A
    解析:
    白色长方体可以看做64个小正方体平铺,由4个角,24个棱和36个中间小正方体构成,角上的4个小正方体有4个面被刷成了黑色,棱上的24个小正方体连续的3个面被刷成了黑色,中间的36个小正方体相对的2个面被刷成了黑色;拼成的大正方体有8个角,24个棱和24个单面,拼接时有4个角需用之前棱上的小正方体替换,每替换一次缺一个黑色面,角上共缺了4个;由于4个棱上的正方体替换到了角上,此时棱上又少了4个小正方体,需用对面为黑色的小正方体替换,每替换一次缺一个黑色面,棱上共缺了4个。大正方体的表面积为4×4×6=96平方厘米,大正方体的表面上共有96-4-4=88平方厘米是黑色的。因此,本题选A。

  • 第5题:

    边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )。


    答案:A
    解析:
    本题主要考查概率的计算及空间想象能力。根据题意,是将大正方体分成四层,每层16个小正方体,两个面都为红色的处于棱上(除过顶点处),每条棱有2个,12条棱共有24个符合条件的小正方体,因此取到两面为红色的小正方体的概率为