itgle.com

设随机变量X的概率密度为令随机变量,(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}.

题目
设随机变量X的概率密度为令随机变量
  (Ⅰ)求Y的分布函数;
  (Ⅱ)求概率P{X≤Y}.


相似考题
更多“设随机变量X的概率密度为令随机变量, ”相关问题
  • 第1题:

    设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.


    答案:
    解析:

  • 第2题:

    设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).


    答案:
    解析:

  • 第3题:

    设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.


    答案:
    解析:

  • 第4题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.


    答案:
    解析:

  • 第5题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第6题:

    设二维随机变量(X,Y)的概率密度为

      求常数A及条件概率密度.


    答案:
    解析:

  • 第7题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第8题:

    设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π


    答案:A
    解析:
    提示 (X,Y)~N(0,0,1,1,0),X~N(0,1),Y~N(0,1),E(X2+Y2) =E(X2)+E(Y2),E(X2)=D(X) + (E(X) )2

  • 第9题:

    设随机变量X的分布函数为求随机变量X的概率密度和概率


    答案:
    解析:
    解:本题考查概率密度概念的简单应用。

  • 第10题:

    设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()

    • A、f1(x)+f2(x)必为某一随机变量的概率密度
    • B、f1(x)f2(x)必为某一随机变量的概率密度
    • C、F1(x)+F2(x)必为某一随机变量的分布函数
    • D、F1(x)F2(x)必为某一随机变量的分布函数

    正确答案:D

  • 第11题:

    设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。


    正确答案:错误

  • 第12题:

    问答题
     设随机变量(X,Y)的概率密度为   求:(1)系数k.      (2)边缘概率密度fX(x),fY(y).      (3)P{X+Y>1}.

    正确答案:
    解析:

  • 第13题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第14题:

    设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.


    答案:
    解析:
    因为,  所以.

  • 第15题:

    设随机变量X的概率密度为fx(x)=的概率密度为_______.


    答案:
    解析:

  • 第16题:

    设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).


    答案:
    解析:
    【简解】本题是2003年数三的考题,考查一个离散型和一个连续型两个随机变量的函数的分布,随机变量的独立性等,
    先求分布函数

    由此得g(u)=0.3f(u-1)+0.7f(u-2).

  • 第17题:

    设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).


    答案:
    解析:
    本题是2001年数三的考题,考查两个随机变量函数的分布和均匀分布.

  • 第18题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第19题:

    设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.


    答案:
    解析:

  • 第20题:

    如果f(x)是某随机变量X的概率密度函数,则可以判断也为概率密度的是( )。《》( )


    答案:D
    解析:

  • 第21题:

    设随机变量x的概率密度为


    答案:D
    解析:


    由x的概率密度为
    可知x的数学期望μ=3,方差α2,则

  • 第22题:

    设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。

    • A、-p(y)
    • B、1-p(-y)
    • C、p(-y)
    • D、.p(y)

    正确答案:C

  • 第23题:

    问答题
    15.设随机变量X的概率密度为

    正确答案:
    解析: