itgle.com
更多“设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,”相关问题
  • 第1题:

    N阶实对称矩阵A正定的充分必要条件是().



    A.A无负特征值
    B.A是满秩矩阵
    C.A的每个特征值都是单值
    D.A^-1是正定矩阵

    答案:D
    解析:
    A正定的充分必要条件是A的特征值都是正数,(A)不对;若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件,选(D).

  • 第2题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。

    A.所有k级子式为正(k=1,2,…,n)
    B.A的所有特征值非负
    C.
    D.秩(A)=n

    答案:A
    解析:

  • 第3题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第4题:

    设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.


    答案:
    解析:

  • 第5题:

    试证:如果A,B都是n阶正定矩阵,则A+B也是正定的


    答案:
    解析:

  • 第6题:

    设A和B都是mn实矩阵,满足r(A+B)=n,证明正定


    答案:
    解析:

  • 第7题:

    设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.


    答案:
    解析:

  • 第8题:

    设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.


    答案:
    解析:

  • 第9题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第10题:

    单选题
    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。
    A

    所有k级子式为正(k=1,2,…,n)

    B

    A的所有特征值非负

    C

    秩(A)=n


    正确答案: A
    解析: 暂无解析

  • 第11题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<r1

    C

    r=r1

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第12题:

    问答题
    设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

    正确答案:
    由AX()=b()有唯一解知r(A)=r(A┆b())=n,因此AX()=0()只有零解。
    若r(ATA)TAX()=0()有非零解,即存在X()0≠0使ATAX()0=0()。所以有X()0TATAX()0=(AX()0)TAX()0=0(),即AX()0=0()。于是方程组AX()=0()有非零解,这与AX()=0()只有零解矛盾,故r(ATA)=n,即ATA可逆。
    由AX()=b()得,ATAX()=ATb(),有X()=(ATA)-1ATb()。如果η()1,η()2,…,η()t是线性方程组AX()=b()的解,则u1η()1+u2η()2+…+utη()t也是AX()=b()的一个解。其中u1+u2+…+ut=1。
    因为η()1,η()2,…,η()t是AX()=b()的解,所以η()2-η()1,η()3-η()1,…,η()t-η()1是AX()=0()的解。
    由u1+u2+…+ut=1,得u1=1-u2-u3…-ut,所以有u1η()1+u2η()2+…+utη()t=(1-u2-u3-…-ut)η()1+u2η()2+…+utη()t=η()1+u2(η()2-η()1)+u3(η()3-η()1)+…+ut(η()t-η()1),即u1η()1+u2η()2+…+utη()t也是AX()=b()的解。
    解析: 暂无解析

  • 第13题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第14题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第15题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第16题:

    设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵


    答案:
    解析:

  • 第17题:

    设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


    答案:
    解析:

  • 第18题:

    设A,B为n阶正定矩阵.证明:A+B为正定矩阵.


    答案:
    解析:

  • 第19题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第20题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第21题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。

    • A、所有k级子式为正(k=1,2,…,n)
    • B、A的所有特征值非负
    • C、秩(A)=n

    正确答案:A

  • 第22题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第23题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1