itgle.com

设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;(Ⅱ)p为何值时,X与Z不相关;(Ⅲ)X与Z是否相互独立?

题目
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;
  (Ⅱ)p为何值时,X与Z不相关;
  (Ⅲ)X与Z是否相互独立?


相似考题
更多“设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0<p<1),令Z=XY. ”相关问题
  • 第1题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为令Z=XY。p为何值时,X与Z不相关


    答案:
    解析:

  • 第2题:

    设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.


    答案:1、0.46587
    解析:
    p(X+2Y≤4)=P(Y=1)P(X≤4-2Y|Y=1)+P(Y=2)P(X≤4-2Y|Y=2)+P(Y=3)P(X≤4-2Y|Y=3)

  • 第3题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为。求Z的概率密度


    答案:
    解析:

  • 第4题:

    设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{X


    答案:A
    解析:
    X~E(1),Y~E(4)且相互独立,所以(X,Y)的概率密度  
      利用公式可以计算出结果.
      【求解】

  • 第5题:

    设随机变量Y服从参数为1的指数分布,a为常数且大于零,则P{Y≤a+1|Y>a}=________.


    答案:
    解析:

    所以应填1-
      【评注】如果记得指数分布具有无记忆性:
      设X~E(λ),当s,t>0时,P{X>s+t|X>t}=P{X>s}.
      本题可以直接求解:
      P{Y≤a+1|Y>a}=1-P{Y>a+1|Y>a)=1-P{Y>1}=1-e^-1.

  • 第6题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第7题:

    设随机变量Y服从参数为1的指数分布,a为常数且大于零,则P{Y≤a+1|Y>a}=()


    正确答案:1-e-1

  • 第8题:

    设随机变量X与Y相互独立,已知P(X≤1)=p,P(Y≤1)=q,则P(max(X,Y)≤1)等于().

    • A、p+q
    • B、pq
    • C、p
    • D、q

    正确答案:B

  • 第9题:

    设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。

    • A、-p(y)
    • B、1-p(-y)
    • C、p(-y)
    • D、.p(y)

    正确答案:C

  • 第10题:

    填空题
    设随机变量X服从于参数为(2,p)的二项分布,随机变量Y服从于参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}=____。

    正确答案: 19/27
    解析:
    P{X≥1}=1-P{X=0}=1-C20p0(1-p)2=5/9,解得p=1/3,故P{Y≥1}=1-P{Y=0}=1-C30(1/3)0(2/3)3=19/27。

  • 第11题:

    填空题
    若随机变量X1,X2,X3相互独立且服从于相同的0-1分布P{X=1}=0.7,P{X=0}=0.3,则随机变量P{X=0}=0.3.则随机变量Y=X1+X2+X3服从于参数为____的____分布,且E(Y)=____.D(Y)=____.

    正确答案: 3,0.7,二项,2.1,0.63
    解析: 暂无解析

  • 第12题:

    填空题
    若随机变量X1,X2,X3相互独立且服从于相同的0-1分布,P{X=1}=0.7,P{X=0}=0.3,则随机变量Y=X1+X2+X3服从于参数为____的____分布,且E(Y)=____。D(Y)=____。

    正确答案: 3,0.7,二项,2.1,0.63
    解析:
    由0-1分布与二项分布之间联系可得Y~B(3,0.7),则E(Y)=3×0.7=2.1,D(Y)=3×0.7(1-0.3)=0.63。

  • 第13题:

    设X,y的概率分布为X~,Y~,且P(XY=0)=1.
      (1)求(X,Y)的联合分布;(2)X,Y是否独立?


    答案:
    解析:

  • 第14题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第15题:

    设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).
      (Ⅰ)求Y的分布函数FY(y);
      (Ⅱ)求EY.


    答案:
    解析:

  • 第16题:

    设随机变量X与Y的概率分布分别为

      且P{X^2=Y^2}=1.
      (Ⅰ)求二维随机变量(X,Y)的概率分布;
      (Ⅱ)求Z=XY的概率分布;
      (Ⅲ)求X与Y的相关系数ρXY.


    答案:
    解析:

  • 第17题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第18题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第19题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第20题:

    设两个随机变量X与Y相互独立且同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式成立的是()

    • A、P{X=Y}=1/2
    • B、P{X=Y}=1
    • C、P{X+Y=0}=1/4
    • D、P{XY=1}=1/4

    正确答案:A

  • 第21题:

    设随机变量X服从参数为2,p的二项分布,随机变量Y服从参数为3,p的二项分布,若P{X≥1}=5/9,则P{Y≥1}=()。


    正确答案:19/27

  • 第22题:

    问答题
    设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

    正确答案:
    解析:

  • 第23题:

    单选题
    设随机变量X与Y相互独立,已知P(X≤1)=p,P(Y≤1)=q,则P(max(X,Y)≤1)等于().
    A

    p+q

    B

    pq

    C

    p

    D

    q


    正确答案: B
    解析: 随机事件{max(X,Y)≤1}={X≤1,Y≤1},因此,由乘法公式得到P(max(X,Y)≤1)=P(X≤1,y≤1)=P(X≤1)P(Y≤1)=pq.故选(B).本题中{max(X,Y)≤1}可以分解成两个简单事件的积,类似地,{max(X,Y)≥1}={X≥1}∪{Y≥1},{min(X,Y)≥1}={X≥1,y≥1},{min(X,Y)≤1}={X≤1}∪{Y≤1}.例如,由本题所给条件可以算得(按加法公式与乘法公式):P(min(X,Y)≤1)=P({x≤1}∪{Y≤1})=P(X≤1)+P(Y≤1)-P(X≤1,Y≤1)=p+q-P(X≤1)P(Y≤1)=p+q-pq.