itgle.com

已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。

题目
已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。


相似考题
更多“已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。”相关问题
  • 第1题:

    垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


    答案:
    解析:
    (1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

    (2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

  • 第2题:

    一个行业包括一个主导厂商(用z表示)和12个次要厂商(用j表示).主导厂商的总成本函数为Ci=0.0333q3-2q2 +50q,,市场需求曲线为Q=250 -p:主导厂商准确地估计出每个小厂商的成本函数为C.= 2q2+ 1Oq,。主导厂商领导市场价格,并管理自己的产出量,使整个市场供给既不短缺,也无剩余。主导厂商能够正确地预期次要厂商将接受它定的价格。主导厂商的定价是为了使自己的利润最大。 (1)主导厂商的定价为多高?它的产量和利润分别为多少? (2)每个小企业的产量和利润分别为多少?


    答案:
    解析:

  • 第3题:

    已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。 该企业现有资本存量为

    当面临短期的产品价格波动时,它将如何生产?


    答案:
    解析:
    对于该企业而言,利润函数为:π=PQ-vK-ωL 在短期,当资本存量一定时,厂商的利润函数为:

    企业利润最大化的一阶条件为:

    此时,企业所需要的劳动力为

  • 第4题:

    考虑一个双寡头古诺模型,p和Q分别表示市场价格和产品销售总量;q1和q2分别表示厂商1和厂商2的产量;MC表示厂商生产的边际成本,假设两个厂商生产的产品完全同质。 如果两个厂商的生产均面临不变的边际成本1/2,且反需求曲线为p=1-Q,则均衡时两个企业的产量分别是多少?


    答案:
    解析:

  • 第5题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第6题:

    完全竞争市场上,厂商生产要素为x1,x2,面对的是竞争性要素需求市场,两种要素的价格都为2,每个企业的固定成本为64。单个厂商的生产函数为

    消费者对该产品的需求函数为Q=280-5p,其中p为产品的市场价格 长期均衡时候企业个数


    答案:
    解析:
    当价格为32时,市场的总需求Q=280-160=120。而单个厂商产量为4,故长期均衡时,企业个数为30个。

  • 第7题:

    假设某完全竞争行业有500个相同的厂商,每个厂商的短期成本函数为:STC=O. 5Q2+Q+10。 (1)求完全竞争市场的短期供给函数。 (2)假设市场需求函数为QD=4 000-400P,求市场的均衡价格和产量。 (3)假定对每一件产品征收0.9元的税,新的市场均衡价格和产量又为多少?厂商和消费者的税收负担各为多少?


    答案:
    解析:
    (1)单个厂商的边际成本函数为:MC=Q+1,因此单个厂商的短期供给函数为 P=MC=Q+l,市场短期供给函数为Qs =500(P-1)。 (2)联立供给函数与需求函数: Qs=500(P-l) QD=4 000 - 400P Qs=QD 解得市场的均衡价格和产量分别为P=5,Q=2 000。 (3)假设对生产者征税。从量税为r=0.9。联立新的供给函数与需求函数: Qs =500(P-r-l) QD=4 000_400P Qs=QD 解得新的市场均衡价格和产量为P7—5.5,Q,=1 800。 厂商获得的价格为P'-r=4.6。厂商的税收负担为(5-4.6)×1 800=720,消费者的税收负担为(5. 5-5)×1 800=900。

  • 第8题:

    已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。


    答案:
    解析:

  • 第9题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果政府规定,禁止在不同市场上制定不同的价格,求此时该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第10题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第11题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设企业处在长期生产中,w=1,v=4, 企业的最优生产方式是什么?企业的长期成本函数是什么?


    答案:
    解析:

  • 第14题:

    假定某垄断厂商生产两种相关联的产品,其中任何一种产品需求量的变化都会影响另一种产品的价格,这两种产品的市场需求函数分别为P1=120 -2Q1 -0. 502,P2=100 - Q2 -0.5Q1。这两种产品的生产成本函数是相互独立的,分别为TC1 =50Q1,TC2=O.5Q22求该垄断厂商关于每一种产品的产量和价格。


    答案:
    解析:

  • 第15题:

    假定一个竞争性厂商,其生产函数为Q=f(L,K)=AL^αK^β,生产要素L和K的价格分别为w和r。 (1)试求在K为不变投入时厂商的短期成本函数。 (2)求厂商的长期成本函数,并讨论不同的规模报酬对平均成本曲线形状的影响。


    答案:
    解析:

  • 第16题:

    假设厂商的生产函数为

    要素K、L价格分别为

    两种要素的投入数量均可以调整。 (1)计算总成本TC(Q)。 (2)若该厂商在产品市场是完全垄断者,且该市场需求曲线是P=2 000-100Q,计算垄断价格。


    答案:
    解析:

  • 第17题:

    一个垄断厂商生产某种产品的成本函数为:C=5+3Q,将其产品在两个地理分割的市场上销售,这两个市场对该产品的需求函数分别为:P1=15-Q1,P2=25-2Q2。 该垄断厂商将针对两个市场制定何种价格策略?两个市场各自能够销售多少产品?厂商实现多少总利润?在两个市场分别造成多少福利损失?


    答案:
    解析:

  • 第18题:

    已知劳动是唯一的可变要素,生产函数为Q =A +10L - 5L2,产品市场是完全竞争的,劳动价格为W.试说明: (1)厂商为劳动的需求函数。 (2)厂商对劳动的需求量与工资反方向变化。 (3)厂商对劳动的需求量与产品价格同方向变化:


    答案:
    解析:

  • 第19题:

    完全竞争市场上,厂商生产要素为x1,x2,面对的是竞争性要素需求市场,两种要素的价格都为2,每个企业的固定成本为64。单个厂商的生产函数为

    消费者对该产品的需求函数为Q=280-5p,其中p为产品的市场价格 长期均衡时的单个企业产量和价格


    答案:
    解析:

  • 第20题:

    一个完全竞争行业中的一个典型厂商,其长期总成本函数为LTC =q3- 60q2+1500q,其中成本的单位为元,q为月产量. (1)推导出其长期平均成本和长期边际成本函数。 (2)若产品市场价格为975元,为实现利润最大化,厂商的产量将是多少? (3)厂商在(2)中的均衡是否与行业均衡并存? (4)若市场的需求曲线为P=9600 -Q,在长期均衡中,该行业将有多少厂商?


    答案:
    解析:

  • 第21题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果该厂商可以将东西部市场区分开,在不同的市场制定不同的价格出售,求该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第22题:

    问答题
    假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和利润。

    正确答案: 根据利润最大化原则MR=MC,MR=9400-8Q,MC=3000,得Q=800,P=6200,π=TR-TC=2556000
    解析: 暂无解析

  • 第23题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析