itgle.com
参考答案和解析
答案:D
解析:
更多“均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为: ”相关问题
  • 第1题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:




    答案:C
    解析:
    提示:动量矩 LO=JOω,其中JO=JO(OA)+ JO(BC)。

  • 第2题:

    图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:



    答案:C
    解析:
    提示:根据动量的公式:p=mvc。

  • 第3题:

    杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。




    答案:B
    解析:

  • 第4题:

    杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:




    答案:B
    解析:
    提示:根据定轴转动刚体上一点加速度与转动角速度、角加速度的关系:an=ω2l,at=αl ,而题中an=acosα , at=asinα。

  • 第5题:

    如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。

    A.0.5
    B.1.0
    C.1.5
    D.2.0

    答案:B
    解析:
    图示瞬时,点A和点B的速度方向均沿水平方向, AB杆作平动,圆轮B的轮心速度

  • 第6题:

    均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:



    答案:A
    解析:
    提示:根据定轴转动刚体的动量矩定义LO=JOω,JO=JOA+JAB。

  • 第7题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第8题:

    匀质杆OA质量为M,长为l,角速度为ω,如图所示。则其动量大小为:


    答案:A
    解析:
    提示 应用牛顿第二定律。

  • 第9题:

    均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。

    A. 1/3ml2ω B. 2/3ml2ω C. ml2ω D. 4/3ml2ω


    答案:D
    解析:

  • 第10题:

    如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第11题:

    匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:


    答案:D
    解析:

  • 第12题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第13题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘圆心,盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:



    答案:D
    解析:
    此为定轴转动刚体,动能表达式为,其中Jc为刚体通过质心且垂直于运动平面
    的轴的转动惯量。
    此题中,,带入动能表达式,选(D)。

  • 第14题:

    均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。




    答案:D
    解析:

  • 第15题:

    均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:



    答案:D
    解析:

  • 第16题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第17题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:



    答案:C
    解析:
    提示:动量 p=∑mivci=(2m?lω+m?2lω)j。

  • 第18题:

    如图4-48所示直角弯杆OAB以匀角速度ω绕O轴转动,并带动小环M沿OD杆运动。已知OA=l,取小环M为动点,OAB杆为动系,当 φ =60°时,M点牵连加速度ae的大小为( )。



    答案:D
    解析:

  • 第19题:

    如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。



    答案:C
    解析:
    提示:根据动量的公式ρ =mvc。

  • 第20题:

    均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。



    答案:D
    解析:
    提示:定轴转动刚体的动能为T = 1/2JOω2。