itgle.com
更多“有甲乙两盒,甲盒中有2个红球,3个白球,乙盒中有3个红球,2个白球,先从甲盒取1球放入乙盒,再从乙盒取1球,则最后取到的是红球的概率为”相关问题
  • 第1题:

    甲袋有白球3只,红球7只,黑球l5只。乙袋有白球10只,红球6只,黑球9只。现从两袋中各取一个,试求两球颜色相同的概率约为( )。

    A.0.17

    B.0.33

    C.0.45

    D.0.8


    正确答案:B

  • 第2题:

    有14个纸盒,其中有装1只球的,也有装2只和3只球的。这些球共有25只,装1只球的盒数等于装2只球和3只球的盒数之和。装3只球的盒子有多少个?( )

    A.7个

    B.5个

    C.4个

    D.3个


    正确答案:C
    C  [解析]设装有3只球的盒子有x个,装有2只球的盒子有了个,则装有1只球的盒子有(x+y)个。由题意可得:x+y+(x+y)=14;(x+y)+3x+2y=25,故x=4,y=3,选C。

  • 第3题:

    现有 A、B 两个容器,容器 A 中有 7 个红球 3 个白球,容器 B 中有 1 个红球 9 个白球,现已 知从这两个容器里任意取出一球,且是红球,则该红球来自容器 A 的概率是:

    A.35%
    B.50%
    C.72.5%
    D.87.5%

    答案:D
    解析:
    两个容器共有8个红球,任取一个球是红球有8种情况,其中有7种情况来自容器A,则红球来自容器A的概率是7÷8=87.5%。

  • 第4题:

    一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.
      (1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.


    答案:
    解析:
    【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
    (2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

    (3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则

  • 第5题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第6题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第7题:

    将2个红球与1个白球随机地放入甲、乙、丙三个盒子中,则乙盒中至少有1个红球的概率为


    答案:D
    解析:

  • 第8题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第9题:

    一袋中有6个白球,4个红球,任取两球都是白球的概率是()

    • A、1/2
    • B、1/3
    • C、1/4
    • D、1/6

    正确答案:B

  • 第10题:

    单选题
    袋子中有3个白球,2个红球,1个黄球,现从袋子中随意取2个球,则取得的2个球中1个是红球1个是白球的概率为()
    A

    1/5

    B

    2/5

    C

    1/3

    D

    2/3


    正确答案: B
    解析: 暂无解析

  • 第11题:

    单选题
    有14个纸盒,其中有装1只球的,也有装2只和3只球的。这些球共有25只,装1只球的盒数等于装2只球和3只球的盒数和。装3只球的盒子有多少个?(....)
    A

    7

    B

    5

    C

    4

    D

    3


    正确答案: D
    解析:

  • 第12题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第13题:

    甲、乙两盒共有棋子l08颗,先从甲盒中取出1/4放人乙盒,再从乙盒取出1/4放回甲盒,这时两盒的棋子数相等,问甲盒原有棋子多少颗?( )。

    A.40

    B.48

    C.52

    D.60


    正确答案:B
    由题意,设甲盒有x颗,乙盒有y颗,列式,x十y=108,3÷4×x+1÷4(y+1÷4×x)=54,计算得,x=48,y=60,故选B。

  • 第14题:

    盒内装有10个白球,2个红球,每次取1个球,取后不放回。任取两次,则第二次取得红球的概率是:

    A. 1/7
    B.1/6
    C.1/5
    D. 1/3

    答案:B
    解析:

    或“试验分两步,求第二步结果的概率”用全概率公式。

  • 第15题:

    一袋中有5个乒乓球,其中4个白球,1个红球,从中任取2个球的不可能事件是()

    A.{2个球都是白球}
    B.{2个球都是红球}
    C.{2个球中至少有1个白球}
    D.{2个球中至少有1个红球}

    答案:B
    解析:
    袋中只有1个红球,从中任取2个球都是红球是不可能发生的.

  • 第16题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第17题:

    有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.


    答案:
    解析:

  • 第18题:

    从5个不同的黑球和2个不同的白球中,任选3个球放入3个不同的盒子中,每盒1球,其中至多有1个白球的不同放法共有( )种

    A.160
    B.165
    C.172
    D.180
    E.182

    答案:D
    解析:

  • 第19题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第20题:

    袋子中有3个白球,2个红球,1个黄球,现从袋子中随意取2个球,则取得的2个球中1个是红球1个是白球的概率为()

    • A、1/5
    • B、2/5
    • C、1/3
    • D、2/3

    正确答案:B

  • 第21题:

    一袋中有6个白球,4个红球,任取两球都是白球的概率是多少?()

    • A、1/2
    • B、1/3
    • C、1/4
    • D、1/6

    正确答案:B

  • 第22题:

    单选题
    现有A、B两个容器,容器A中有7个红球3个白球,容器B中有1个红球9个白球,现已知从这两个容器里任意取出一球,且是红球,则该红球来自容器A的概率是:
    A

    35%

    B

    50%

    C

    72.5%

    D

    87.5%


    正确答案: C
    解析:

  • 第23题:

    填空题
    一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为____。

    正确答案: 2/5
    解析:
    设A:“第一个人取红球”,B:“第二个人取红球”,则
    P(B)=P[B(A∪A(_))]=P(AB)+P(A(_)B)=P(B|A)P(A)+P(B|A(_))P(A(_))=(19/49)×(20/50)+(20/49)×(30/50)=2/5

  • 第24题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。