itgle.com

设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。

题目

设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。


相似考题
更多“ 设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。 ”相关问题
  • 第1题:

    从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().



    答案:A
    解析:

  • 第2题:

    设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:


    答案:B
    解析:
    X的数学期望

  • 第3题:

    设总体X的分布函数为
      
      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
      (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.


    答案:
    解析:

  • 第4题:

    设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,


    答案:
    解析:

  • 第5题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第6题:

    设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,
      X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.


    答案:
    解析:

  • 第7题:

    设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.


    答案:
    解析:
    【分析】答案应填.

  • 第8题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).


    答案:
    解析:

  • 第9题:

    设总体X的分布函数为

    其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求EX与EX^2;
      (Ⅱ)求θ的最大似然估计量.
      (Ⅲ)是否存在实数a,使得对任何ε>0,都有


    答案:
    解析:
    【分析】(Ⅰ)给出F(x;θ)就有f(x;θ),密度函数有了,就有

  • 第10题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第11题:

    设总体X的概率密度为
      
      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第12题:

    设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()


    正确答案:9

  • 第13题:

    设总体X的概率密度为
    未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:


    答案:B
    解析:

  • 第14题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第15题:

    设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.


    答案:
    解析:

  • 第16题:

    设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).


    答案:
    解析:

  • 第17题:

    设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


    答案:
    解析:

  • 第18题:

    设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Yb,Yn).


    答案:
    解析:

  • 第19题:

    设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2=
    ,则E(S^2)=_______.


    答案:
    解析:

  • 第20题:

    设X1,X2,…,X9是来自正态总体X的简单随机样本,证明统计量Z服从自由度为2的t分布.


    答案:
    解析:

  • 第21题:

    设总体X的概率密度为
      
    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.

    (Ⅰ)求参数λ的矩估计量;

    (Ⅱ)求参数λ的最大似然估计量.


    答案:
    解析:

  • 第22题:

    设总体X的概率密度为
      
      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第23题:

    从均值为μ、方差为σ2的总体中抽得一个容量为n的样本X1,X2,…,Xn,其中μ已知,σ2未知,下列各项属于统计量的有( )。



    答案:A,B,C
    解析:
    统计量是不含未知参数的样本函数,因此DE两项不是统计量。