itgle.com

设某射手每次射击打中目标的概率为0.5,现在连续射击10次,求击中目标的次数ε的概率分布.又设至少命中3次才可以参加下一步的考核,求此射手不能参加考核的概率.

题目
设某射手每次射击打中目标的概率为0.5,现在连续射击10次,求击中目标的次数ε的概率分布.又设至少命中3次才可以参加下一步的考核,求此射手不能参加考核的概率.


相似考题
更多“设某射手每次射击打中目标的概率为0.5,现在连续射击10次,求击中目标的次数ε的概率分布.又设至少命中3次才可以参加下一步的考核,求此射手不能参加考核的概率.”相关问题
  • 第1题:

    某人连续向一目标独立射击(每次命中率都是3/4),一旦命中,则射击停止,设X 为射击的次数,那么射击3次停止射击的概率是:


    答案:C
    解析:

  • 第2题:

    某射手有5发子弹,射一次,命中的概率为0.9.如果命中了就停止射击,否则一直射到子弹用尽,求耗用子弹数ε的分布列.


    答案:
    解析:

  • 第3题:

    甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.
      (1)甲、乙两人同时向目标射击,求目标被命中的概率;
      (2)甲、乙两人任选一人,由此入射击,目标被击中,求是甲击中的概率.


    答案:
    解析:
    【解】(1)设A={甲击中目标},B={乙击中目标},C={击中目标},则C=A+B,
    P(C)=P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)
    =0.6+0.5-0.6×0.5=0.8.
    (2)设A1={选中甲},A2={选中乙},B={目标被击中},则

  • 第4题:

    两个射手共同执行一项狙击犯罪分子的任务,甲射手射击的命中率为80%,乙射手射击的命中率为75%,那么犯罪分子被击中的概率是()

    • A、60%
    • B、80%
    • C、95%
    • D、100%

    正确答案:C

  • 第5题:

    某人射击,每次击中目标的概率为0.8。射击3次,至少击中2次的概率约为:()

    • A、0.7
    • B、0.8
    • C、0.5
    • D、0.9

    正确答案:D

  • 第6题:

    在三次独立重复射击中,若至少有一次击中目标的概率为37/64,则每次射击击中目标的概率为()。


    正确答案:1/4

  • 第7题:

    四名射手独立地向一目标进行射击,已知各人能击中目标的概率分别为1/2、3/4、2/3、3/5,则目标能被击中的概率是()。


    正确答案:59/60

  • 第8题:

    填空题
    设一射手击中的概率为0.4,则在5次射击中第二次射击击中的概率为____.

    正确答案: 0.4
    解析:
    该射手第二次射击击中与另外4次是否击中无关,在5次射击中第二次射击击中的概率与射击手击中的概率相同,为0.4.

  • 第9题:

    单选题
    某人射击,每次击中目标的概率为0.8。射击3次,至少击中2次的概率约为:()
    A

    0.7

    B

    0.8

    C

    0.5

    D

    0.9


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    某人独立地射击10次,每次射击命中目标的概率为0.8,随机变量X表示10次射击中命中目标的次数,则E(X2)等于().
    A

    64

    B

    65.6

    C

    66.6

    D

    80


    正确答案: C
    解析: 把每次射击看成是做一次伯努利试验,"成功"表示"命中目标","失败"表示"没有命中目标",出现成功的概率p=0.8.于是,X服从参数n=10,p=0.8的二项分布.已知二项分布的数学期望与方差分别是 E(X)=np=10×0.8=8, D(X)=np(1-p)=10×0.8×0.2=1.6. 于是,由方差的计算公式推得 E(X2)=D(X)+[E(X)]2=1.6+82=65.6.故选(B). 本题借助于常用分布的数字特征来求E(X2)是比较方便的,因为常用分布的数学期望与方差可以作为已知值使用.如果用随机变量函数的数学期望的定义

  • 第11题:

    单选题
    设X表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则E(X2)=(  )。
    A

    20

    B

    18.4

    C

    12.6

    D

    16


    正确答案: B
    解析:
    由题意可知,X~B(10,0.4),则E(X2)=D(X)+[E(X)]2=10×0.4(1-0.4)+(10×0.4)2=18.4。

  • 第12题:

    填空题
    设X表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则E(X2)=____。

    正确答案: 18.4
    解析:
    由题意可知,X~B(10,0.4),则
    E(X2)=D(X)+[E(X)]2=10×0.4(1-0.4)+(10×0.4)2=18.4

  • 第13题:

    甲、乙两人独立地向同一目标射击,甲、乙两人击中目标的概率分别为0.8,
    0.5,两人各射击1次,求至少有1人击中目标的概率.


    答案:
    解析:

  • 第14题:

    某射手每次射击打中目标的概率都是0.8,连续向一目标射击,直到第一次击中为止,求“射击次数”x的期望是()。

    A:0.5
    B:0.8
    C:1
    D:1.25

    答案:D
    解析:
    {图}

  • 第15题:

    设X表示12次独立重复射击击中目标的次数,每次击中目标的概率为0.5,则E(X^2)=_______.


    答案:1、39
    解析:
    X~B(12,0.5),E(X)=6,D(X)=3,E(X)^2=D(X)+[E(X)]^2=3+36=39.

  • 第16题:

    对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为0.4,0.5,0.7,试求 (1)在这三次射击中,恰好有一次击中目标的概率; (2)至少有一次命中目标的概率。


    正确答案: P{三次射击恰击中目标一次}=0.4(1-0.5)(1-0.7)+(1-0.4)0.5(1-0.7)+(1-0.4)(1-0.5)0.7=0.36
    P{至少有一次命中}=1-P{未击中一次}=1-(1-0.4)(1-0.5)(1-0.7)=0.91

  • 第17题:

    已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为()

    • A、0.04
    • B、0.2
    • C、0.8
    • D、0.96

    正确答案:C

  • 第18题:

    两射手独立地向同一目标各射击一次,假设两射手的命中率分别为0.9和0.8,则目标被击中的概率为()


    正确答案:0.98

  • 第19题:

    一射手对同一目标独立地进行4次射击,假设每次射击命中率相同,若至少命中1次的概率为80/81,则该射手的命中率p=()。


    正确答案:2/3

  • 第20题:

    问答题
    41.某射手命中率为.他独立地向目标射击4次,则至少命中一次的概率为

    正确答案:
    解析:

  • 第21题:

    填空题
    已知甲击中某目标的概率是0.9,乙击中该目标的概率是0.8,现在甲、乙两射手独立地各射击目标一次,则目标仅被甲击中的概率是____,目标仅被乙击中的概率是____,目标不被击中的概率是____.

    正确答案: 0.18,0.08,0.02
    解析:
    利用独立事件同时发生的概率乘法公式.目标仅被甲击中就是甲击中而乙没击中,其概率为0.9×(1-0.8)=0.18;目标仅被乙击中,则甲没击中,概率为(1-0.9)×0.8=0.08;目标没被击中的概率为(1-0.9)×(1-0.8)=0.02.

  • 第22题:

    问答题
    某射手有三发子弹,射击一次命中的概率为2/3,如果命中了就停止射击,否则一直射到子弹用尽,用X表示耗用的子弹数,  求:(1)X的分布律;  (2)E(X);  (3)D(X).

    正确答案:
    解析:

  • 第23题:

    单选题
    甲、乙两射手各进行一次射击,甲射中目标的概率为0.6,乙射中目标的概率为0.5,则至少有一人射目标的概率是()。
    A

    0.30

    B

    0.50

    C

    0.80

    D

    其它


    正确答案: D
    解析: 暂无解析