在抛物线y=x2(第一象限部分,且2≤8)上求一点,使过该点的切线与直线y=0,x=8相交所围成的三角形的面积为最大.
1.已知曲线C为y= 2x2,直线l为y= 4x.(10分)(1)求由曲线C与直线l所围成的平面图形的面积S;(2)求过曲线C且平行于直线l的切线方程.
2.由抛物线y=x2与三直线x=a,x=a+1,y=0所围成的平面图形,a为下列( )值时图形的面积最小。
3.求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.
4.设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。
第1题:
第2题:
第3题:
第4题:
第5题: