itgle.com
更多“在抛物线y=x2(第一象限部分,且2≤8)上求一点,使过该点的切线与直线y=0,x=8相交所围成的三角形的面 ”相关问题
  • 第1题:

    求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.


    答案:
    解析:

  • 第2题:

    设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.


    答案:
    解析:

  • 第3题:

    求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·


    答案:
    解析:
    y=x2(x≥0),y=1及y轴围成的平面图形D如图3—1所示.其面积为

  • 第4题:

    如图所示,已知A,B为直线L:y=mx-m+2与抛物线y=x2的两个交点。
    (1)直线ι经过一个定点C,试求出点C的坐标;(2分)
    (2)若m=-1,已知在直线L下方的抛物线上存在一点P(点P与坐标原点0不重合),且△ABP的面积为(3√13)/2,求点P的坐标。(6分)


    答案:
    解析:
    (1)直线L:y=m(x-1)+2,当x=1时,y的取值与m无关,此时y=2,所以直线过定点(1,2);

  • 第5题:

    设P是圆x2+y2=2上的一点,该圆在点P的切线平行于直线x+y+2=0,则点P的坐标为



    答案:E
    解析: