itgle.com
更多“【判断题】0402 若函数f(z)在a处解析,则它在该点的某个邻域内可以展开为幂级数。”相关问题
  • 第1题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )


    答案:C
    解析:

  • 第2题:

    已知函数f(x,y)在点(0,0)的某个邻域内连续,且 ,则

    A.点(0,0)不是f(x,y)的极值
    B.点(0,0)是f(x,y)的极大值点
    C.点(0,0)是f(x,y)的极小值点
    D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点


    答案:A
    解析:

  • 第3题:

    若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。



    答案:D
    解析:
    二元函数z=f(x,y)在点(x0,y0)处可微,可得到如下结论:①函数在点(x0,y0)处的偏导数一定存在,C项正确;②函数在点(x0,y0)处一定连续,AB两项正确;可微,可推出一阶偏导存在,但一阶偏导存在不一定一阶偏导在P0点连续,也有可能是可去或跳跃间断点,故D项错误。

  • 第4题:

    设f(x)是周期为2π的周期函数,它在[-π,π]上的表达式为:


    若将f(x)展开成傅里叶级数,则该级数在x=-3π处收敛于( )。



    答案:C
    解析:
    所给函数满足收敛定理,当x=-3π为函数的问断点,函数f(x)的傅里叶级数在x

  • 第5题:

    给定关系模式 R;其中 U 为属性集,F 是 U 上的一组函数依赖,那么 Armstroog 公理系统的增广律是指( )。

    A.若 X→Y,X→Z,则 X→YZ 为 F 所蕴涵
    B.若 X→Y,WY→Z,则 XW→Z 为 F 所蕴涵
    C.若 X→Y,Y→Z 为 F 所蕴涵,则 X→Z 为 F 所蕴涵
    D.若 X→Y,为 F 所蕴涵,且 Z?U,则入 XZ→YZ 为 F 所蕴涵

    答案:D
    解析:
    从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong 的论文里,这些规则常被称作“Armstrong 公理”设U 是关系模式R 的属性集,F 是R 上成立的只涉及U 中属性的函数依赖集。函数依赖的推理规则有以下三条:自反律:若属性集Y 包含于属性集X,属性集X 包含于U,则X→Y 在R 上成立。(此处X→Y是平凡函数依赖)增广律:若X→Y 在R 上成立,且属性集Z 包含于属性集U,则XZ→YZ 在R 上成立。传递律:若X→Y 和 Y→Z在R 上成立,则X →Z 在R 上成立。其他的所有函数依赖的推理规则可以使用这三条规则推导出。

  • 第6题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第7题:

    将函数f(x)=xe3x展开为x的幂级数,并指出其收敛区间.


    答案:
    解析:

  • 第8题:

    若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()

    • A、解析
    • B、可导
    • C、可分
    • D、可积

    正确答案:A

  • 第9题:

    单选题
    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().
    A

    取得极大值

    B

    取得极小值

    C

    的某个邻域内单调增加

    D

    的某个邻域内单调减少


    正确答案: C
    解析: 暂无解析

  • 第10题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第11题:

    单选题
    设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处(  )。
    A

    取得极大值

    B

    某邻域内单调递增

    C

    某邻域内单调递减

    D

    取得极小值


    正确答案: D
    解析:
    因为y=f(x)是微分方程y″-2y′+4y=0的一个解,故对于x=x0,有f″(x0)-2f′(x0)+4f(x0)=0。又因为f′(x0)=0,f(x0)>0,可得f″(x0)<0,故函数在x=x0处取极大值。故应选(A)。

  • 第12题:

    单选题
    y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。
    A

    在x0点取得极大值

    B

    在x0的某邻域单调增加

    C

    在x0点取得极小值

    D

    在x0的某邻域单调减少


    正确答案: A
    解析:
    由f′(x0)=0代入y″-2y′+4y=0可得y″(x0)=-4y(x0)<0。又f′(x0)=0,故函数y=f(x)在x0处取得极大值。

  • 第13题:

    下列命题正确的是().

    A若|f(x)|在x=a处连续,则f(x)在x=a处连续
    B若f(x)在x=a处连续,则|f(x)|在x=a处连续
    C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续
    D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续


    答案:B
    解析:

  • 第14题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

    A.(x-a)[f(x)-f(a)]≥0
    B.(x-a)[f(x)-f(a)]≤0
    C.
    D.

    答案:C
    解析:

  • 第15题:

    设y=f(x)是微分方程y´´-2y´+4y=0的一个解,又f(xo)>0,f´(xo)=0,则函数f(x)在点xo( ).

    A.取得极大值
    B.取得极小值
    C.的某个邻域内单调增加
    D.的某个邻域内单调减少

    答案:A
    解析:

  • 第16题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第17题:

    设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    B.若X→Y,X→Z,则X→YZ为F所蕴涵
    C.若X→Y,WY→Z,则XW→Z为F所蕴涵
    D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

    答案:C
    解析:
    本题考查关系数据库基础知识。从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作“Armstrong公理”。选项A“若X→Y,Y→Z为F所蕴涵,则H为F所蕴涵”符合Armstrong公理系统的传递率。选项B“若X→Y,X→Z,则X→YZ为F所蕴涵”符合Armstrong公理系统的合并规则。选项C“若X→Y,WY→Z,则XW→Z为F所蕴涵”符合Armstrong公理系统的伪传递率。选项D“若X→Y为F所蕴涵,且K?U,则XZ→YZ为F所蕴涵”符合Armstrong公理系统的增广率。

  • 第18题:

    设f(x)在x=a的某个邻域内有定义,则f(x)在x-a处可导的一个充分条件是( )。



    答案:D
    解析:
    用可导的定义判断

  • 第19题:

    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微


    正确答案:错误

  • 第20题:

    设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)>O,f’(x0)=0,则函数f(x)在点x0().

    • A、取得极大值
    • B、取得极小值
    • C、的某个邻域内单调增加
    • D、的某个邻域内单调减少

    正确答案:A

  • 第21题:

    判断题
    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
    A

    B


    正确答案:
    解析: 暂无解析

  • 第22题:

    单选题
    若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()
    A

    解析

    B

    可导

    C

    可分

    D

    可积


    正确答案: B
    解析: 暂无解析

  • 第23题:

    单选题
    设y=f(x)是满足微分方程y″+y′-esinx=0的解,且f′(x0)=0,则f(x)在(  )。
    A

    x0的某个邻域内单调增加

    B

    x0的某个邻域内单调减少

    C

    x0处取得极小值

    D

    x0处取得极大值


    正确答案: B
    解析:
    将f′(x0)=0代入方程得f″(x0)的符号,从而由极值的充分条件得正确选项。
    f(x)满足方程f″(x)+f′(x)-esinx=0,所以有

  • 第24题:

    单选题
    如果函数f(x)在点x0的某个邻域内恒有|f(x)|≤M(M是正数),则函数f(x)在该邻域内(  )。
    A

    极限存在

    B

    连续

    C

    有界

    D

    不能确定


    正确答案: C
    解析:
    由函数有界的定义可知:设函数f(x)的定义域为D,数集X∈D。如果存在数K1使得f(x)≤K1对任意x∈X都成立则称函数f(x)在X上有上界。故选C项。