itgle.com
更多“创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。”相关问题
  • 第1题:

    已知4阶矩阵A~B,A的特征值为3,4,5,6,E为4阶单位矩阵,则|B-E|=( )

    A.20
    B.60
    C.120
    D.360

    答案:C
    解析:

  • 第2题:

    设A=,E为三阶单位矩阵.
      (Ⅰ)求方程组Ax=0的一个基础解系;
      (Ⅱ)求满足AB=E的所有矩阵B.


    答案:
    解析:
    【分析】(Ⅰ)是基础题,化为行最简即可.
    关于(Ⅱ)中矩阵B,其实就是三个方程组的求解问题.
    【解】(Ⅰ)对矩阵A作初等行变换,得

  • 第3题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第4题:

    设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


    答案:
    解析:

  • 第5题:

    ,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B


    答案:
    解析:

  • 第6题:

    设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=



    A.E
    B.-E
    C.A
    D.-A

    答案:A
    解析:

  • 第7题:

    设A为n阶实对称矩阵,下列结论不正确的是().

    A.矩阵A与单位矩阵E合同
    B.矩阵A的特征值都是实数
    C.存在可逆矩阵P,使P^-1AP为对角阵
    D.存在正交阵Q,使Q^TAQ为对角阵

    答案:A
    解析:
    根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

  • 第8题:

    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;


    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)

  • 第9题:

    问答题
    创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。

    正确答案: >>A=magic(4)
    >>B=eye(4)
    >>C=A+B
    >>D=A*B
    >>E=A.*B
    >>F=A^2
    >>G=A’
    解析: 暂无解析

  • 第10题:

    问答题
    设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

    正确答案:
    因为Am=E,所以,Am,=,A,m=1,,A,=1≠0,即矩阵A可逆。
    由题知A(~)=(A*)T,其中A*为A的伴随矩阵。所以有(A(~))m=[(A*)T]m=[(,A,A-1)T]m=[(A-1)T]m=[(Am)-1]T=E。
    解析: 暂无解析

  • 第11题:

    问答题
    设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

    正确答案: >>A=magic(4)
    >>B=inv(A)
    >>C=det(A)
    >>D=rank(A)
    >>E=trace(A)
    解析: 暂无解析

  • 第12题:

    单选题
    设有一个M*N的矩阵已经存放在一个M行N列的数组x中,且有以下程序段:sum=0;for(i=0;i
    A

    矩阵两条对角线元素之和

    B

    矩阵所有不靠边元素之和

    C

    矩阵所有元素之和

    D

    矩阵所有靠边元素之和


    正确答案: A
    解析:
    程序执行过程为:第一个for循环实现对第一列和第N列求和。第二个for循环在上一个for循环结果上实现对第一行和第M行从第二个元素到第N-1个元素的求和,总体来说,就是矩阵所有靠边元素之和,答案选择D选项。

  • 第13题:

    已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.


    答案:
    解析:
    【解】化简矩阵方程,有AX(A-B)+BX(B-A)=E,即(A-B)X(A-B)=E.
    由于,所以矩阵A-B可逆,且于是.

  • 第14题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第15题:

    初等矩阵( )

    A.都可以经过初等变换化为单位矩阵
    B.所对应的行列式的值都等于1
    C.相乘仍为初等矩阵
    D.相加仍为初等矩阵

    答案:A
    解析:

  • 第16题:

    设为3阶矩阵,将的第2列加到第1列得矩阵,再交换的第2行与第3行得单位矩阵,记,,则A=( )



    答案:D
    解析:

  • 第17题:

    与n阶单位矩阵E相似的矩阵是

    A.
    B.对角矩阵D(主对角元素不为1)
    C.单位矩阵E
    D.任意n阶矩阵A


    答案:C
    解析:

  • 第18题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第19题:

    阅读下列说明和C代码,回答问题1至问题3

    【说明】 某工程计算中要完成多个矩阵相乘(链乘)的计算任务。 两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am×n*Bn×p,需要m*n*p次乘法运算。 矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110×100,A2100×5,A35×50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。 矩阵链乘问题可描述为:给定n个矩阵


    答案:
    解析:

  • 第20题:

    可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()

    • A、乘方矩阵
    • B、列矩阵
    • C、单位矩阵
    • D、生成矩阵

    正确答案:D

  • 第21题:

    填空题
    设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

    正确答案: -1
    解析:
    由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-α()α()T)(E+α()α()T/a)=E-α()α()Tα()α()T/a-α()α()Tα()α()T/a=E,即α()α()T(1/a-1-2a2/a)=0。
    由于α()α()T≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。

  • 第22题:

    单选题
    设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。
    A

    4

    B

    2

    C

    -1

    D

    1


    正确答案: B
    解析:
    由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-α()α()T)(E+α()α()T/a)=E-α()α()Tα()α()T/a-α()α()Tα()α()T/a=E,即α()α()T(1/a-1-2a2/a)=0。
    由于α()α()T≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。

  • 第23题:

    单选题
    可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()
    A

    乘方矩阵

    B

    列矩阵

    C

    单位矩阵

    D

    生成矩阵


    正确答案: D
    解析: 暂无解析