itgle.com
更多“单选题用卡尺测量尺寸时,被测量Y与输入量X,通过函数关系f来表达的数学模型为(  )。A Y=f(Xi)B Y=f(X)C Y=XD Y=FX”相关问题
  • 第1题:

    设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.


    答案:
    解析:

  • 第2题:

    下列函数图象与y=f(x)的图象关于原点对称的是(  )

    A.y=-f(x)
    B.y=f(-x)
    C.y=-f(-x)
    D.y=|f(x)|

    答案:C
    解析:

  • 第3题:


    A.f(-x,y)=f(x,y),f(x,-y)=-f(x,y)
    B.f(-x,y)=f(x,y),f(x,-y)=f(x,y)
    C.f(-x,y)=-f(x,y),f(x,-y)=-f(x,y)
    D.f(-x,y)=-f(x,y),f(x,-y)=f(x,y)

    答案:B
    解析:
    要求f(x,y)关于x和y都是偶函数。

  • 第4题:

    设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(-X
    A.1-F(-a,y)
    B.1-F(-a,y-0)
    C.F(+∞,y-0)-F(-a,y-0)
    D.F(+∞,y)-F(-a,y)

    答案:C
    解析:

  • 第5题:


    (1)求函数y=f(x)的表达式;
    (2)讨论函数y=fx)在(0,+∞)内的单调性.


    答案:
    解析:

  • 第6题:

    指出下列关系模式是第几范式?并说明理由。 (1)R(X,Y,Z)F={XY→Z} (2)R(x,Y,z)F={Y→z,XZ→Y} (3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ} (4)R(x,Y,z)F={X→Y,X→Z} (5)R(x,Y,Z)F={XY→Z} (6)R(W,X,Y,Z)F={X→Z,WX→Y}


    正确答案: (1)R是BCNF。R候选关键字为XY,F中只有一个函数依赖,而该函数依赖的左部包含了R的候选关键字XY。
    (2)R是3NF。R候选关键字为XY和XZ,R中所有属性都是主属性,不存在非主属性对的候选关键字的传递依赖。
    (3)R是BCNF。R候选关键字为X和Y,∵X→YZ,∴X→Y,X→Z,由于F中有Y→Z,Y→X,因此Z是直接函数依赖于X,而不是传递依赖于X。又∵F的每一函数依赖的左部都包含了任一候选关键字,∴R是BCNF。
    (4)R是BCNF。R的候选关键字为X,而且F中每一个函数依赖的左部都包含了候选关键字X。
    (5)R是BCNF。R的候选关键字为XY,而且F中函数依赖的左部包含了候选关键字XY。
    (6)R是1NF。R的候选关键字为WX,则Y,Z为非主属性,又由于X→Z,因此F中存在非主属性对候选关键字的部分函数依赖。

  • 第7题:

    设有关系模式R(U,F),X包含于U、Y包含于U,如果从F中的函数依赖能够推导出X→Y,则称F逻辑蕴涵X→Y,或称X→Y是F的()


    正确答案:逻辑蕴涵

  • 第8题:

    正弦波y(t)的幅值被时域信号x(t)调制,若它们相应的频域描述分别为Y(f),X(f),那么调制后信号的频域描述为()。

    • A、X(f)×Y(f)
    • B、X(f)+Y(f)
    • C、X(f)*Y(f)
    • D、X(f)–Y(f)

    正确答案:C

  • 第9题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: D
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第10题:

    单选题
    用卡尺测量尺寸时,被测量y与输入量X,通过函数关系,来表达的数学模型为(  )。
    A

    Y=f(Xi)    

    B

    Y=f(X)    

    C

    Y=X   

    D

    Y=Fx


    正确答案: C
    解析: 暂无解析

  • 第11题:

    问答题
    若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

    正确答案:
    为简化计算,可令u=tx,v=ty,w=tz,则f(u,v,w)=tkf(x,y,z),两边对t求导,得x∂f/∂u+y∂f/∂v+z∂f/∂w=ktk-1f(x,y,z),则上式对一切实数t都成立。令t=1,得x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
    解析: 暂无解析

  • 第12题:

    单选题
    若有定义语句:double x,y,*px,*py;执行了px=&x;py=&y;之后,正确的输入语句是(  )。
    A

    scanf(%1f%1f,px,py);

    B

    scanf(%f%f&x,&y);

    C

    scanf(%f%f,x,y);

    D

    scanf(%1f%1f,x,y);


    正确答案: D
    解析:
    输入函数scanf的标准格式是:scanf(格式控制,地址列表);,CD两项中地址列表格式不正确,应为&x,&y。格式控制和地址列表间应该用逗号隔开,B项也错误。%f用来输入float类型变量,%lf用来输入double类型变量,%le表示用科学计数法输入double。答案选择A选项。

  • 第13题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为



    A.AF^2(x)
    B.F(x)F(y)
    C.1-[1-F(x)]^2
    D.[1-F(x)][1-F(y)]

    答案:A
    解析:
    随机变量Z=max(X,Y)的分布函数Fz(x)应为Fz(x)=P{Z≤x},由此定义不难推出Fz(x).【求解】故答案应选(A).
    【评注】不难验证(B)F(x)F(y)恰是二维随机变量(X,Y)的分布函数.(C)1-[1-F(x)]^2则是随机变量min(X,Y)的分布函数.(D)[1-F(x)][1-F(y)]本身不是分布函数,因它不满足分布函数的充要条件.

  • 第14题:

    下列( )项是在D={(x,y)|x2+y2≤1,x≥0,y≥0)上的连续函数f(x,y),且f(x,y)=3(x+y)+16xy。

    A.f(x,y)=3(x+y)+32xy
    B.f(x,y)=3(x+y)-32xy
    C.f(x,y)=3(x+y)-16xy
    D.f(x,y)=3(x+y)+16xy

    答案:B
    解析:
    解本题的关键在于搞清二重积分



    是表示一个常数,对f(x,y)=3(x+y)+



    利用极坐标进行二重积分计算

  • 第15题:

    设随机变量X,Y相互独立,它们的分布函数为Fx(x),F(y),则Z=min{X,Y}的分布函数为().


    答案:C
    解析:
    FZ(z)=P(Z≤z)=P(min{X,Y}≤z)=1-P(min{X,Y}>z)  =1-P(X>z,Y>z)=1-P(X>z)P(Y>z)
      =1-【1-P(X≤z)】【1-P(Y≤z)】=1-【1-FX(z)】【1-FY(z)】,选(C).

  • 第16题:

    用卡尺测量尺寸时,被测量Y与输入量X,通过函数关系f来表达的数学模型为( )。
    A. Y=Z(Xi) B. Y=f(X) C. Y = X D. Y = FX


    答案:C
    解析:
    函数关系式可能非常复杂,以至于不能明确地表示出来。当然,数学模型有时也 可能简单到如用卡尺测量工件的尺寸,工件的尺寸就等于卡尺的示值。

  • 第17题:

    用卡尺测量尺寸时,被测量y与输入量X,通过函数关系,来表达的数学模型为()。

    • A、Y=f(Xi)
    • B、Y=f(X)
    • C、Y=X
    • D、Y=Fx

    正确答案:C

  • 第18题:

    判断下列关系模式可以达到的范式级别: 1)R(X,Y,Z)F={XY→Z} 2)R(X,Y,Z)F={Y→Z,XZ→Y} 3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ} 4)R(X,Y,Z)F={X→Y,X→Z}


    正确答案: 1)R(X,Y,Z)F={XY→Z,Y→Z 达到1NF
    2)R(X,Y,Z)F={Y→Z,XZ→Y}达到3CNF
    3)R(X,Y,Z)F={Y→Z,X→YZ}达到2NF
    4)R(X,Y,Z)F={X→Y,X→Z} 达到BCNF

  • 第19题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()

    • A、F2(x)
    • B、F(x)F(y)
    • C、1-[1-F(x)]2
    • D、[1-F(x)][1-F(y)]

    正确答案:A

  • 第20题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第21题:

    单选题
    用卡尺测量尺寸时,被测量y与输入量X,通过函数关系,来表达的数学模型为()。
    A

    Y=f(Xi)

    B

    Y=f(X)

    C

    Y=X

    D

    Y=Fx


    正确答案: A
    解析: 暂无解析

  • 第22题:

    单选题
    设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。
    A

    若fx′(x0,y0)=0,则fy′(x0,y0)=0

    B

    若fx′(x0,y0)=0,则fy′(x0,y0)≠0

    C

    若fx′(x0,y0)≠0,则fy′(x0,y0)=0

    D

    若fx′(x0,y0)≠0,则fy′(x0,y0)≠0


    正确答案: A
    解析:
    设z=f(x,y)=f(x,y(x)),由题意可知∂z/∂x=fx′+fy′·(dy/dx)=0。
    又φ(x,y)=0,则dy/dx=-φx′/φy′。故fx′-(φx′/φy′)fy′=0。又φy′≠0,则fx′φy′=φx′fy′。所以当fx′≠0时fy′≠0。

  • 第23题:

    单选题
    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。
    A

    F2(x)

    B

    F(x)F(y)

    C

    1-[1-F(x)]2

    D

    [1-F(x)][1-F(y)]


    正确答案: B
    解析:
    FZ(x)=P{Z≤x}=P{max(X,Y)≤x}=P{X≤x,Y≤x}=P{X≤x}·P{Y≤x}=F2(x),故应选A。