itgle.com
更多“3、方阵A的属于不同特征值的特征向量一定线性无关.”相关问题
  • 第1题:

    设A为n阶方阵,则A可对角化的充分必要条件是( ).

    A. A有n个不同特征值

    B.A有n个不同特征向量

    C.A有n个线性元关的特征向量

    D.IAI≠0。


    参考答案:C

  • 第2题:

    n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。

    A.1/3

    B.1

    C.3

    D.9


    正确答案:C
    解析:n*n矩阵可看做是n维空间中的线性变换,它将任何一个向量x变换成新的向量(A的矩阵与列向量x的乘积)。三维空间中的旋转变换就是一种线性变换,它将一个变量变换成另一个变量。旋转变换必然绕某个轴旋转,这个轴上的向量经过该旋转变换后得到的向量仍会保持在这根轴上。这根轴上的向量属于该旋转变换的特征向量。对于单纯的旋转变换来说,这根旋转轴上的特征向量所对应的特征值为1。线性变换A的特征向量Y及其相应的特征值λ满足AY=λY,其几何意义是特征向量Y经过线性变换A变换成向量λY(保持在同一轴上,只是乘以常数λ,放大或缩小入倍,λ为负时变为相反方向)。本题中的矩阵A以及由w1、w2、w3组成的列向量w具有关系(可以通过矩阵乘法得到)Aw=3w,所以,(w1、w2、w3)是该矩阵的特征向量,其相应的特征值为3。

  • 第3题:


    A.β是A的属于特征值0的特征向量
    B.α是A的属于特征值0的特征向量
    C.β是A的属于特征值2的特征向量
    D.α是A的属于特征值2的特征向量

    答案:D
    解析:

  • 第4题:

    若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )

    A.A与B相似
    B.
    C.A=B
    D.A与B不一定相似,但|A|=|B|


    答案:A
    解析:

  • 第5题:

    设A是3阶方阵,A能与对角阵相似的充分必要条件是( ).

    A.
    B.A是实对称阵
    C.A有3个线性无关的特征向量
    D.A有3个不同的特征值

    答案:C
    解析:

  • 第6题:

    设二维非零向量α不是二阶方阵A的特征向量.
      (1)证明α,Aα线性无关;
      (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;


    答案:
    解析:

  • 第7题:

    已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:

    A. β是A的属于特征值0的特征向量
    B. a是A的属于特征值0的特征向量
    C. β是A的属于特征值3的特征向量
    D. a是A的属于特征值3的特征向量

    答案:C
    解析:
    提示 通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x 即为矩阵A对应特征值λ的特征向量。
    再利用题目给出的条件:
    aTβ=3 ①
    A=βaT ②
    将等式②两边均乘β,得A*β=βaT*β,变形Aβ=β(aTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

  • 第8题:

    已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。

    • A、β是A的属于特征值0的特征向量
    • B、α是A的属于特征值0的特征向量
    • C、β是A的属于特征值3的特征向量
    • D、α是A的属于特征值3的特征向量

    正确答案:C

  • 第9题:

    设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().

    • A、3
    • B、5
    • C、7
    • D、不能确定

    正确答案:B

  • 第10题:

    单选题
    设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
    A

    α1-α2是A的属于特征值1的特征向量

    B

    α1-α3是A的属于特征值1的特征向量

    C

    α1-α3是A的属于特征值2的特征向量

    D

    α1+α2+α3是A的属于特征值1的特征向量


    正确答案: A
    解析: 暂无解析

  • 第11题:

    问答题
    证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

    正确答案:
    (1)因为α()1,α()2,…,α()r是A的属于特征值λ的特征向量,则有Aα()iα()i(i=1,2,…,r)。设k1α()1+k2α()2+…+krα()rα()1,α()2,…,α()r的任一非零线性组合,则
    A(k1α()1+k2α()2+…+krα()r)=k1Aα()1+k2Aα()2+…+krAα()r=k1λα()1+k2λα()2+…+krλα()r=λ(k1α()1+k2α()2+…+krα()r)
    由定义知k1α()1+k2α()2+…+krα()r是A的属于特征值λ的特征向量。
    (2)必要性
    设矩阵A可逆,可知行列式,A,≠0。
    由于,A,=λ1λ2…λn,故λi≠0(i=1,2,…,n)。
    充分性
    由矩阵A的特征值λi≠0(i=1,2,…,n),知,A,=λ1λ2…λn≠0,即矩阵A可逆。
    解析: 暂无解析

  • 第12题:

    问答题
    设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明:  (1)Ai(i=1,2,3)的特征值有且仅有0和1;  (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j);  (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。

    正确答案:
    (1)设λi为矩阵Ai的特征值,α()i(α()i≠0)是Ai的属于特征值λi的特征向量,则有λiα()i=Aiα()i=Ai2α()iiAiα()ii2α()i,所以(λii2)α()i=0。
    α()i≠0知λii2=0,所以λi=0或1,即若Ai有特征值,则只能是0或1。
    由Ai2=Ai得Ai(Ai-E)=0,因为AiAj=0(i≠j)且Ai≠0(i=1,2,3),所以Ai≠E,即Ai-E≠0。所以知Ai的列向量都是齐次线性方程组AiX()=0()的解,且AiX()=0()有非零解。
    从而,Ai,=0,即,Ai-0E,=0。即0是Ai的特征值,同理可证1也是Ai的特征值。
    (2)设Ai属于特征值1的特征向量为α()i,则Aiα()i=α()i,AjAiα()i=Ajα()i(i≠j)。
    因为AiAj=0(i≠j),所以AjAi=0,Ajα()i=0α()i,故Ai的属于特征值1的特征向量是Aj属于特征值0的特征向量。
    (3)设有数k1,k2,k3使k1α()1+k2α()2+k3α()3=0(),即k1A1α()1+k2A1α()2+k3A1α()3=0(),根据(2)可知α()2,α()3应是A1的属于特征值0的特征向量,即A1α()2=0(),A1α()3=0()
    故有k1A1α()1=k1·1·α()1=k1α()1=0,由α()1≠0,故k1=0。同理可证k2=k3=0,因此α()1α()2α()3线性无关。
    解析: 暂无解析

  • 第13题:

    阐述方阵的特征值和特征向量的定义。


    参考答案:设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值或本征值。式Ax=λx也可写成(A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式|A-λE|=0。特征向量是一个非简并的向量,在这种变换下其方向保持不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

  • 第14题:


    A.β是A的属于特征值0的特征向量
    B.α是A的属于特征值0的特征向量
    C.β是A的属于特征值3的特征向量
    D.α是A的属于特征值3的特征向量

    答案:C
    解析:

  • 第15题:

    设A是n阶矩阵,且Ak=O(k为正整数),则( )。

    A.A一定是零矩阵
    B.A有不为0的特征值
    C.A的特征值全为0
    D.A有n个线性无关的特征向量

    答案:C
    解析:

  • 第16题:

    已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:

    A. β是A的属于特征值0的特征向量
    B. α是A的属于特征值0的特征向量
    C. β是A的属于特征值3的特征向量
    D. α是A的属于特征值3的特征向量

    答案:C
    解析:
    通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x即为矩阵A对应特征值λ的特征向量。
    再利用题目给出的条件:
    αTβ=3 ①
    A=βαT ②
    将等式②两边均乘β,得辱A*β=βαT*β,变形Aβ=β(αTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

  • 第17题:

    设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.


    答案:
    解析:

  • 第18题:

    设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A^2(α1+α2)=α1+α2,则|A|=________.


    答案:1、-1
    解析:

  • 第19题:

    设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。

    • A、α是矩阵-2A的属于特征值-2λ的特征向量
    • B、α是矩阵的属于特征值的特征向量
    • C、α是矩阵A*的属于特征值的特征向量
    • D、α是矩阵AT的属于特征值λ的特征向量

    正确答案:D

  • 第20题:

    设A是3阶方阵,A能与对角阵相似的充分必要条件是().

    • A、存在可逆阵P,使得P-1AP=B
    • B、A是实对称阵
    • C、A有3个线性无关的特征向量
    • D、A有3个不同的特征值

    正确答案:C

  • 第21题:

    单选题
    设A是3阶方阵,A能与对角阵相似的充分必要条件是().
    A

    存在可逆阵P,使得P-1AP=B

    B

    A是实对称阵

    C

    A有3个线性无关的特征向量

    D

    A有3个不同的特征值


    正确答案: C
    解析: 暂无解析

  • 第22题:

    单选题
    设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。
    A

    α是矩阵-2A的属于特征值-2λ的特征向量

    B

    α是矩阵的属于特征值的特征向量

    C

    α是矩阵A*的属于特征值的特征向量

    D

    α是矩阵AT的属于特征值λ的特征向量


    正确答案: B
    解析: 暂无解析

  • 第23题:

    单选题
    已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。
    A

    β是A的属于特征值0的特征向量

    B

    α是A的属于特征值0的特征向量

    C

    β是A的属于特征值3的特征向量

    D

    α是A的属于特征值3的特征向量


    正确答案: D
    解析: 暂无解析

  • 第24题:

    单选题
    设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().
    A

    3

    B

    5

    C

    7

    D

    不能确定


    正确答案: C
    解析: 暂无解析