itgle.com
更多“曲线y=x3—2x在点(1,-1)处的切线方程为 .”相关问题
  • 第1题:

    已知函数f(x)=x3 +ax2+b,曲线y=f(x)在点(1,1)处的切线为y=x.

    (I)求a,b;

    (II)求f(x)的单调区间,并说明它在各区间的单调性.


    正确答案:

  • 第2题:

    设曲线y=^e1?x2与直线x=-1的交点为P,则曲线在点P处的切线方程是(  )

    A.2x-y+2=0
    B.2x+y+1=0
    C.2x+y-3=0
    D.2x-y+3=0

    答案:D
    解析:


    @##

  • 第3题:

    曲线x2+y2=2x在点(1,1)处的法线方程为()


    答案:A
    解析:

  • 第4题:

    曲线y=lnx在点(1,0)处的切线方程为.


    答案:
    解析:
    【答案】Y=x-1【考情点拨】本题考查了切线方程的知识点.

  • 第5题:

    曲线y=sin(x+1)在点(-1,0)处的切线斜率为______.


    答案:
    解析:
    填1.因为y'=cos(x+1),则y'(-1)=1.

  • 第6题:

    曲线y=2x2在点(1,2)处的切线方程y=______.


    答案:
    解析:

  • 第7题:

    曲线y=x3-4x+2在点(1,-l)处的切线方程为()

    A.x-y-2=0
    B.x-y=0
    C.x+y=0
    D.27+y-2=0

    答案:C
    解析:

  • 第8题:

    曲线y=x3-4x+2在点(1,-1)处的切线方程为(  )

    A.x-y-2-0
    B.x-y=0
    C.x+y=0
    D.x+y-2=0

    答案:C
    解析:

  • 第9题:

    曲线y=χ3+2χ-1在点(1,2)处的切线方程为( )。

    A、5χ-y-3=0
    B、14χ-y-12=0
    C、5χ-y+3=0
    D、14χ+y-12=0

    答案:A
    解析:
    由已知得y'=3x2+2,则其在(1,2)处切线的斜率为k=5,又切线过点(1,2)则其方程为5x— y-3=0。

  • 第10题:

    求曲线在点(1,3)处的切线方程.


    答案:
    解析:
    曲线方程为,点(1,3)在曲线上.因此所求曲线方程为或写为2x+y-5=0.
    【评析】如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
    (x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为

  • 第11题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第12题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第13题:

    曲线y=lnx在点(1,0)的切线方程是()。


    正确答案:y=x-1

  • 第14题:

    曲线x2+y2=2x在点(1,1)处的切线方程为.


    答案:
    解析:
    【答案】y=1【考情点拨】本题考查了曲线上一点处的切线方程的知识点.
    【应试指导】由x2+y2=2x,两边对x求导得2x+

  • 第15题:

    曲线y=ex+x2在点(0,1)处的切线斜率为______.


    答案:
    解析:

  • 第16题:

    已知曲线y=ax3+bx2+cx在点(1,2)处有水平切线,且原点为该曲线的拐点,求a,b,c的值,并写出此曲线的方程.


    答案:
    解析:

  • 第17题:

    曲线y=e2x-4x在点(0,1)处的切线方程是()

    A.2x-y-1=0
    B.2x+y-1=0
    C.2x-y+1=0
    D.2x+y+1=0

    答案:B
    解析:
    【考情点拨】本题考查了曲线的切线方程的知识点.

  • 第18题:

    曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程是________.


    答案:1、y=x+1.
    解析:
    先求曲线sin(xy)+ln(y-x)=x在点(0,1)处切线斜率y'(0).等式sin(xy)+ln(y-x)=x两端对x求导得

    在上式中令x=0,y=1得y'(0)=1,于是该曲线在点(0,1)处的切线方程为y-1=x,即y=x+1.

  • 第19题:

    (I)求曲线y=Inx在(1,0)点处的切线方程.
    (Ⅱ)并判定在(0,+∞)上的增减性.


    答案:
    解析:

  • 第20题:

    曲线y=lnx在点(e,1)处切线的斜率为( ).《》( )


    答案:D
    解析:

  • 第21题:

    曲线y=3x+1在点(1,3)处的切线方程为( )。

    A、y=2x+1
    B、r=4x-1
    C、y=4x+2
    D、y=3x

    答案:B
    解析:
    先求出y=x3+1在点(1,3)处切线的斜率为4,再根据过(1,3),得到切线方程为y=4x-l。

  • 第22题:

    求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.


    答案:
    解析:


    【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间.

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。