itgle.com

计算机浮点数的表示中,可分为阶码和尾数两部分,如果某机阶码为8位 (含1位符号位)定点整数,用移码表示,其阶码最大正数是(8),最小负数是(9)。A.1111111B.11111111C.10000000D.1

题目

计算机浮点数的表示中,可分为阶码和尾数两部分,如果某机阶码为8位 (含1位符号位)定点整数,用移码表示,其阶码最大正数是(8),最小负数是(9)。

A.1111111

B.11111111

C.10000000

D.1


相似考题
更多“计算机浮点数的表示中,可分为阶码和尾数两部分,如果某机阶码为8位 (含1位符号位)定点整数,用移码 ”相关问题
  • 第1题:

    用12位寄存器表示规格化浮点数,左4位为阶码(含1位符号),右8位为尾数(含1尾符),阶码用移码,尾数用补码表示时,(-40)10表示成规定的浮点数是(2)。

    A.

    B.

    C.

    D.


    正确答案:B
    解析:浮点数中尾数最高位的真值为1的浮点数称为规格化浮点数。将浮点数规格化的方法是调整阶码使尾数满足下列关系:尾数为原码表示时,无论正负应满足1/2<|d|1,即小数点后的第一位数一定要为1。正数的尾数应为0.1x…x,负数的尾数应为1.1x…x。尾数用补码表示时,小数最高位应与数符符号位相反。正数应满足1/2d1,即0.1x…x;负数应满足-1/2>d-1,即1.0x…x。(-40)10=-(0.101000)2×2+6,阶码6用移码表示为1110,尾数-0.101000用补码表示为1011000,尾数为8位所以加补一位0,因此选B。

  • 第2题:

    下面是某种计算机的32位短浮点数格式如图1.7

    其中,M为用定点小数表示的尾数的绝对值,占23位;Ms是尾数的符号位,占1位;Ms和M一起表示尾数。E为用定点整数表示的阶码,占8位。若机器表示中取阶码的基数为2,求采用下列五种不同编码方式时,浮点数-123625E-3(隐含基数为10)规格化后的机器码:

    阶码用补码方式、尾数用原码方式时,为(80);

    阶码用补码方式、尾数用反码方式时,为(81);

    阶码用移码方式、尾数用原码方式时,为(82);

    阶码用移码方式、尾数用补码方式时,为(83);

    阶码用移码方式、尾数用反码方式时,为(84);

    A.10000111100001000110000000000000

    B.00000111100001000101111111111111

    C.10000111111110000101111111111111

    D.00000111111110111010000000000000


    正确答案:D

  • 第3题:

    某浮点数格式如下:7 位阶码(包含一个符号位),9 位尾数(包含一个符号位)。若阶码用移码、尾数用规格化的补码表示,则浮点数所能表示数的范围是()。


    答案:A
    解析:
    浮点数所能表示的数值范围如下:最大的正数

  • 第4题:

    某计算机系统中,16位浮点数的表示格式如图6-1所示。其中,阶码4位(含1位符号)为定点整数,尾数12位(含1位符号)为定点小数。

    设一个数机器码为1110001010000000,若阶码为移码且尾数为原码,则其十进制数真值为(1)。

    A.20

    B.25

    C.0.078125

    D.20.969375


    正确答案:A
    解析:为了充分利用尾数来表示更多的有效数字,即提高数据的表示精度,通常采用规格化浮点数。规定化浮点数在运算结束将运算结果存到计算机中时,必须是规格化的浮点数。规格化浮点数尾数的最高数值位是有效数字,即正尾数0.5≤F1,负尾数-1F≤-0.5。要求规格化以后,其尾数部分是正数时为0.1×××的形式,是负数时,对于原码为1.1×××的形式,对于补码为1.0×××的形式,可以通过尾数小数点的左右移动和阶码的变化实现。对于本试题的解答思路是,对给定的机器码按给定的浮点数格式得到阶码和尾数,然后将阶码变为十进制数,最后得到浮点数的十进制真值。判断如果给定的浮点数机器码不是规格化表示的,则可将其表示为规格化的机器码。规格化时,先看给定的浮点数机器码的尾数是用什么码表示的,然后看看是否已是规格化数,如不是,将尾数小数点移位,但要注意,为保持浮点数的真值不变,阶码一定要相应地调整。另外在解答此类题目时,还要注意题目条件中给出的阶码和尾数是用什么码表示的,否则很容易出错,而得不到正确的计算结果。针对本道题目,对所给机器码1110001010000000,按所规定的浮点数表示形式,可知阶码为1110(最高位为阶符1),尾数为001010000000(最高位为尾符0)。①若阶码为移码,1110表示为十进制数加6,尾数为原码表示加0.010lB,所以浮点数为26×0.0101B=010100B=20。②若阶码为补码,1110表示为十进制数减2;尾数为补码,因该尾数为正数,即加0.0101,该浮点数为2-2×0.0101B=0.000101B=0.078125D。将此浮点数用规格化数形式表示:2-2÷0.0101B=2-3×0.101B,阶码-3的补码为1101,因为浮点数规格化要求尾数最高数据位为有效数据位,即尾数绝对值大于等于0.5。实际判断中,对于尾数以补码表示时,看符号位与最高位是否相同,如不相同即为规格化数,如相同即为非规格化数,故规格化后的机器码为1101010100000000。对本题所给出的机器码来说,就是使其尾数001010000000左移一位成为010100000000,相当于尾数数值乘2,相应地其阶码就应减1,即-2减1得-3。

  • 第5题:

    表示成如下浮点数格式,用十六进制表示正确的是:(1)表示尾数:原码、小数、24位,包括一个隐藏位;阶码:移码、整数、7位:阶码和尾数均不包括符号位,基值均为2。(2)表示尾数:基值为16、原码、小数、6位;阶码:基值为2、移码、整数、6位;阶码和尾数均不包括符号位。

    A.3ECCCCCC

    B.40199999

    C.3ECCCCCE

    D.40lA0000

    E.3ECCCCCD


    正确答案:A
    解析:(1)尾符阶码隐藏位尾数001111101110011001100110011001100写成16进制规格化浮点数格式为:3ECCCCCC