itgle.com

在一次围棋比赛中,实行单循环制(即每个选手都与其他选手比赛一局),每局胜者记2分,输者记0分,如果平局则双方各得1分。今有四位记分员统计了比赛中全部选手的得分总和,结果分别为2005、2004、2070、2008,经核实只有一位记分员统计无误。问这次比赛共有多少名选手参加?( ) A.44 B.45 C.46 D.47

题目

在一次围棋比赛中,实行单循环制(即每个选手都与其他选手比赛一局),每局胜者记2分,输者记0分,如果平局则双方各得1分。今有四位记分员统计了比赛中全部选手的得分总和,结果分别为2005、2004、2070、2008,经核实只有一位记分员统计无误。问这次比赛共有多少名选手参加?( ) A.44 B.45 C.46 D.47


相似考题
更多“在一次围棋比赛中,实行单循环制(即每个选手都与其他选手比赛一局),每局胜者记2分,输者记0分,如果 ”相关问题
  • 第1题:

    某单位举行象棋比赛,计分规则为:赢者得2分,负者得0分,平局各得1分,每位选手与其他选手各下一局。已知男选手数是女选手的10倍,而得分是女选手的4.5倍,则参加比赛的男选手数是

    A.40人
    B.30人
    C.20人
    D.10人

    答案:D
    解析:
    解法一:第一步,题目难度较大,无从入手,考虑使用代入排除法解题,代入验证时采用就简代入原则,优先从D选项10开始代入。第二步,若参加比赛的男选手为10人,则参加比赛的女选手为1人,共11人。每场比赛无论是分出胜负还是平局,均共得2分,11人参加循环赛共进行=55场比赛,得分总数应该为55×2=110分,男选手得分是女选手的4.5倍,则女选手共得110÷5.5=20分。1名女选手共参加10场比赛,如果都获胜恰好得20分,满足题意。因此,选择D选项。解法二:设女选手有x人,则男选手有10x人,共有选手11x人。进行循环赛共有



    场,每场比赛无论是分出胜负还是平局,均共得2分,因此循环赛总分数为(



    )分。男生所得分数是女生的4.5倍,则女生所得分数为



    分。一个女生共进行11x-1场比赛,最多得22x-2分,则22x2-2x≤22x-2,解不等式得x≤1,则最多有1名女选手,10名男选手。因此,选择D选项。

  • 第2题:

    象棋比赛中,每个选手都与其他选手恰好比赛一局,每局胜者记2分,负者记0分,和棋各记1分,四位观众统计了比赛中全部选手得分总数分别是:1979,1980,1983,1985,经核实只有一位观众统计正确,则这次比赛的选手共有多少名?

    A. 44
    B. 45
    C. 46
    D. 47

    答案:B
    解析:
    很容易判断比赛总分不可能为奇数,则总分只可能是1980,那么由1980/2=990,所以共进行了990场比赛,设参赛选手为X,(x-1)+(x-2)+...+2+1=990,解得X=45,故答案为B。

  • 第3题:

    一次国际象棋比赛,有10名选手参加,每名选手都要与其他选手比赛一次,选手们的得分全不一样。已知:
    (1)第一名选手和第二名选手一次都没有输;
    (2)前两名的总分比第三名选手多10分;
    (3)第四名选手与最后四名选手的得分和相等。
    (每局棋胜者得1分,负者得0分,平局每人得0. 5分)
    请问:从第一名到第六名共得分数为()。
    A. 46 B. 25 C. 18 D. 39


    答案:D
    解析:
    单循环赛,每人赛9盘棋,所以最高分为9分,前两名都没有输,说明没有全胜的人。所以,最高分最多为8. 5分。
    那么,第二名最多8分,第三名最多8.5+8-10 = 6. 5(分),第四名最多6分。
    后四名选手之间要赛4X3 /2=6(盘)。
    每盘出现1分,这四人之间要累计6分,那么这四人的总分至少要有6分,就是说第四名的分数至少是6分。
    综合“第四名最多6分”“第四名的分数至少是6分”,可知第四名的得分应该是6分。
    由此可知:第三名6. 5分,第四名6分,第一名是8. 5分,第二名是8分,后四人最后总分是6分。
    10名选手的循环赛总盘数是1/2x10x(10-1)=45(盘),总分是1x45 = 45(分)。故第一到第六名共得的分数为45-6=39(分)。所以本题选D。

  • 第4题:

    象棋比赛中,每个选手均与其他选手比赛一局,每局胜者得2分,负者得0分,和棋各得1分,那么以下可能是这次比赛所有选手得分的总和是:
    A78
    B67
    C56
    D89


    答案:C
    解析:

  • 第5题:

    某场羽毛球单打比赛采取三局两胜制。假设甲选手在每局都有80%的概率赢乙选手,那么这场单打比赛甲有多大的概率战胜乙选手?

    A. 0.768
    B. 0.8000
    C. 0.896
    D. 0.924

    答案:C
    解析:
    概率问题。分析甲获胜的情况可得:所求概率=0.8×0.8+0.8×0.2×0.8+0.2×0.8×0.8=0.896。因此,本题答案为C选项。