itgle.com

图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(ω= C),而图b)、d)的角速度不为常数(ω≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?A.图 a) B.图 b) C.图 c) D.图 d)

题目
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(ω= C),而图b)、d)的角速度不为常数(ω≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?


A.图 a)
B.图 b)
C.图 c)
D.图 d)

相似考题
更多“图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(ω= C),而图b)、d)的角速度不为常数(ω≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系? ”相关问题
  • 第1题:

    偏心轮为均质圆盘,其质量为m,半径为R,偏心距OC=R/2。若在图示位置时,轮绕O轴转动的角速度为ω,角加速度为α,则该轮的惯性力系向O点简化的主矢FI和主矩MIO的大小为:



    答案:A
    解析:
    提示:MIO=-JOα,其中 JO = JC + m* OC2 。

  • 第2题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。




    答案:C
    解析:

  • 第3题:

    图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:



    答案:C
    解析:
    提示:根据动量的公式:p=mvc。

  • 第4题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第5题:

    均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。




    答案:D
    解析:

  • 第6题:

    均质圆盘质量为m,半径为R,再铅垂面内绕o轴转动,图示瞬吋角速度为w,则其对o轴的动量矩和动能的大小为:


    答案:C
    解析:
    解:选C

  • 第7题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第8题:

    一转动惯量为J的圆盘绕一固定轴转动,起初角速度为w。。设它所受阻力矩与转动角速度成正比,即M=-kw(k为正的常数),求圆盘的角速度从w。变为1/2w。时所需的时间。


    答案:
    解析:

  • 第9题:

    如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第10题:

    一转动惯量为J的圆盘绕一固定轴转动,起初角速度为W0。设它所受阻力矩与转动角速度成正比,即M=-KW(k为正的常数),则圆盘的角速度为W0/2时其角加速度a=(),圆盘的角速度从W0变为W0/2时所需的时间为()。


    正确答案:-KW0/2JW;J/KIn2

  • 第11题:

    单选题
    由开普勒第二定律推导行星角速度ω与其到太阳的距离r的关系为()。
    A

    距离平方乘角速度为常数

    B

    距离乘角速度为常数

    C

    距离的立方成角速度为常数

    D

    距离乘角速度平方为常数


    正确答案: D
    解析: 暂无解析

  • 第12题:

    均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:



    答案:D
    解析:

  • 第13题:

    图示a)、b)系统中的均质圆盘质量、半径均相同,角速度与角加速度分别为ω1、 ω2 和 α1、α2,则有:


    A. α1 =α2
    B. α1 >α2
    C. α1 2
    D. ω1 =ω2

    答案:B
    解析:
    提示:根据动量矩定理。

  • 第14题:

    均质圆盘质量为m,半径为R,在铅垂面绕内O轴转动,图示瞬间角速度为ω,则其对O轴的动量矩大小为(  )。

    A.mRω
    B.mRω/2
    C.mR2ω/2
    D.3mR2ω/2

    答案:D
    解析:
    根据质点的动量矩公式,体系对O点的动量矩为:

  • 第15题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:

    A. FI=mRα ,MIC=1/3mL2α B. FI=mRω2 ,MIC = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第16题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:


    A. FI=mRα ,MI
    B=1/3mL2α
    C. FI=mRω2 ,MI
    D = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第17题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:



    答案:A
    解析:
    提示:根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小为FI= mac ; MIO=JOα。

  • 第18题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:



    答案:D
    解析:
    提示:圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第19题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图4-78示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为()。



    答案:A
    解析:
    提示:根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小FI=maC,MIO=JOα。

  • 第20题:

    质心在转轴上的匀角速度定轴转动刚体,其惯性力系向转轴上的某点简化的结果可能是()

    • A、零力系;
    • B、一个力偶;
    • C、一个力;
    • D、一个力螺旋

    正确答案:A,B

  • 第21题:

    以下几种说法中,哪些是正确的?()

    • A、当刚体绕定轴转动时,惯性力系的合力必作用在其质心上;
    • B、当刚体作平移运动时,惯性力系的合力必作用在其质心上;
    • C、只有当惯性力系的主矢等于零时,惯性力系的主矩与简化中心的位置无关;
    • D、当刚体绕定轴转动时,惯性力系的主矩的大小等于Jzε。

    正确答案:B,C

  • 第22题:

    单选题
    图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
    A

    图A.

    B

    图B.

    C

    图C.

    D

    图D.


    正确答案: B
    解析: 暂无解析