itgle.com
更多“1. 设直线L的方程为 ”相关问题
  • 第1题:

    设方程y´´-4y´+3y=0的某一积分曲线,它在点(0,2)处与直线x-y+2=0相切,则该积分曲线的方程是( ).

    A.
    B.
    C.
    D.

    答案:B
    解析:

  • 第2题:

    设L为连接(0,2)和(1,0)的直线段,


    答案:D
    解析:
    提示:利用已知两点求出直线方程L:y=-2x+2,

  • 第3题:

    过点M(3,-2,1)且与直线L :平行的直线方程是:


    答案:D
    解析:
    直线L是平面χ - y- z +1 = 0和平面2χ+ y - 3z + 4 = 0的交线,直线L的方向向量

  • 第4题:

    已知曲线C为y=2x2及直线L为y=4x.
    ①求由曲线C与直线L所围成的平面图形的面积S;
    ②求曲线C的平行于直线L的切线方程.


    答案:
    解析:
    画出平面图形如图l一3—4阴影所示.
    图1—3—3

    图1—3—4

  • 第5题:

    设η为非零向量,A=,η为方程组AX=O的解,则a=_______,方程组的通解为_______.


    答案:1、3 2、k(-3 3、1 4、2)^T
    解析:

  • 第6题:

    设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标


    答案:
    解析:

  • 第7题:

    点M(-5,1)关于y轴的对称点M'与点N(1,一1)关于直线l对称,则直线l的方程是( )



    答案:C
    解析:

  • 第8题:

    高中数学《直线的两点方程式》
    一、考题回顾



    二、考题解析
    【教学过程】
    (一)导入新课
    利用点斜式方程求解直线方程:




    【答辩题目解析】
    1.两点式方程是根据什么推导出来的?为什么要推导两点式?
    2.本节课的教学目标是什么?


    答案:
    解析:
    1、两点式方程是根据点斜式方程推导而来。题目来源于考生回忆
    两点式相对于点斜式方程而言,如果知道直线上的两点,很容易写出直线方程,另外两点式更具有对称,形式更美观、更整齐,便于记忆。

    2、【知识与技能】掌握直线方程的两点的形式特点及适用范围,能根据两点求直线的点斜式方程。题目来源于考生回忆
    【过程与方法】通过应用直线的点斜式方程的探究过程中获得两点式方程,增强比较、分析、应用的能力。
    【情感态度与价值观】通过学习直线的两点式方程的特征和适用范围,渗透数学中普遍存在相互联系、相互转化等观点。

  • 第9题:

    设直线的方程为x=y-1=z, 平面的方程为x-2y+z=0,则直线与平面( )。
    A.重合 B.平行不重合 C.垂直相交 D.相交不垂直


    答案:B
    解析:
    正确答案为B。
    提示:直线的方向向量为s = (1,1,1),平面的法向量为n= (1,-2,1),s·n = 1-2 + 1 = 0,这两个向量垂直,直线与平面平行,又直线上的点(0,1,0)不在平面上,故直线与平面不重合。

  • 第10题:

    在同一平面内,直线与圆弧相切,计算切点坐标的方法是()。

    • A、将直线方程与圆方程联立求公共解
    • B、将直线方程代入圆方程求解
    • C、将圆方程代入直线方程求解
    • D、将两个方程相加消元求解

    正确答案:A

  • 第11题:

    设直线的方程为x=y-1=z,平面的方程为x-2y+z=0,则直线与平面()。

    • A、重合
    • B、平行不重合
    • C、垂直相交
    • D、相交不垂直

    正确答案:B

  • 第12题:

    单选题
    设直线的方程为x=y-1=z,平面的方程为x-2y+z=0,则直线与平面( )
    A

    重合

    B

    平行不重合

    C

    垂直相交

    D

    相交不垂直


    正确答案: C
    解析:

  • 第13题:

    设平面方程x+y+Z+1=0,直线的方程是l-x=y+1= z,则直线与平面:
    (A)平行 (B)垂直 (C)重合 (L)相交但不垂直


    答案:D
    解析:
    解:选D
    所以直线与平面不垂直。又1x(-1) + 1x1+1x1=1≠0,所以直线与平面不平行。

  • 第14题:

    设直线方程为x=y-1=z,平面方程为x-2y+z=0,则直线与平面:
    A.重合 B.平行不重合
    C.垂直相交 D.相交不垂直


    答案:B
    解析:
    从而知直线//平面或直线与平面重合;再在直线上取一点(0,1,0),验证该点是否满足平面方程。

  • 第15题:

    设平面方程:x + y + z-1 = 0,直线的方程是1-x = y + 1=z,则直线与平面:
    A.平行 B.垂直 C.重合 D.相交但不垂直


    答案:D
    解析:

  • 第16题:



    且与椭圆短轴的两个端点组成等边三角形。
    (1)求椭圆的方程;
    (2)过点F作一直线l交椭圆于A,B两点,设F1为椭圆的另一个焦点,当 △F1AB的面积最大时,求l的方程。


    答案:
    解析:



  • 第17题:

    设封闭曲线L的极坐标方程为,则L所围成的平面图形的面积为


    答案:
    解析:

  • 第18题:

    设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
      (Ⅰ)求曲面∑的方程;
      (Ⅱ)求Ω的形心坐标.


    答案:
    解析:
    【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.

  • 第19题:

    设圆C与圆(x-5)2+y2=2关于直线y=2x对称,则圆C的方程为



    答案:E
    解析:

  • 第20题:

    在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系。已知 点A的极坐标为.直线Z的极坐标方程为且点A在直线Z上。
    (1)求。的值及直线Z的直角坐标方程;
    (2)圆C的参数方程为试判断直线Z与圆C的位置关系。


    答案:
    解析:
    所以直线l与圆C相交。

  • 第21题:

    已知中心在坐标原点0的椭圆C经过点A(2,3)且点F(2,0)为其右焦点。
    (1)求椭圆C的方程;
    (2)是否存在平行于OA的直线l,使l与椭圆C有公共点,且直线OA与l的距离等于4,若存在,求l方程;若不存在,请证明。


    答案:
    解析:

  • 第22题:

    根据下列资料编制直线回归方程r=0.9a=2.8()

    • A、直线回归方程yc=2.8+1.08x
    • B、直线回归方程yc=2.8+1.18x
    • C、直线回归方程yc=0.9+1.08x
    • D、直线回归方程yc=0.9+1.18x

    正确答案:A

  • 第23题:

    单选题
    设直线方程为x=y-1=z,平面方程为x-2y+z=0,则直线与平面(  )。[2011年真题]
    A

    重合

    B

    平行不重合

    C

    垂直相交

    D

    相交不垂直


    正确答案: C
    解析:
    直线的方向向量s=(111),平面的法向向量n=(1,-21),其向量积s·n1210,则这两个向量垂直,即直线与平面平行。又该直线上的点(010)不在平面上,故直线与平面不重合。