itgle.com
更多“设总体X服从参数λ的指数分布,X1,X2,…,Xn是从中抽取的样本,则E(X)为( )。 ”相关问题
  • 第1题:

    设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().


    答案:D
    解析:

  • 第2题:

    设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().


    答案:A
    解析:

  • 第3题:

    设总体X的概率密度为
    未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:


    答案:B
    解析:

  • 第4题:

    设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:


    答案:B
    解析:
    X的数学期望

  • 第5题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第6题:

    设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,


    答案:
    解析:

  • 第7题:

    设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.


    答案:
    解析:
    【分析】答案应填.

  • 第8题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).


    答案:
    解析:

  • 第9题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第10题:

    设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()


    正确答案:9

  • 第11题:

    单选题
    设总体X服从区间[-2,4]上的均匀分布,x1,x2,···,xn为其样本,则( )
    A

    n/3

    B

    1/3

    C

    3/n

    D

    3


    正确答案: C
    解析:

  • 第12题:

    问答题
    总体x~N(μ,σ2),x1,x2,…,xn为其样本,未知参数μ的矩估计为_______ .

    正确答案:
    解析:

  • 第13题:

    设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ).

    A.
    B.
    C.S
    D.

    答案:A
    解析:

  • 第14题:

    设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(λ>1)的指数分布,记φ(x)为标准正态分布函数,则



    答案:C
    解析:
    【简解】本题是数四的考题.X1,X2,…,Xn,…独立同分布、方差存在.根据中心极限定理  

  • 第15题:

    设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:


    答案:C
    解析:

  • 第16题:

    设某元件的使用寿命X的概率密度为f(x;θ)=,其中θ>0为未知参数,又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.


    答案:
    解析:

  • 第17题:

    设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.


    答案:1、F 2、(10,5)
    解析:
    本题是数三的考题,由于X~N(0,2^2),则 
    且相互独立,故

    答案应填服从F分布,参数为(10,5).

  • 第18题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第19题:

    设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2=
    ,则E(S^2)=_______.


    答案:
    解析:

  • 第20题:

    设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.


    答案:
    解析:

  • 第21题:

    设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:


    答案:D
    解析:
    提示 注意 E(x)=0,σ2=D(x)=E(x2) - [E(x)]2=E(x2),σ2也是x的二阶原点矩,σ2的矩估计量是样本的二阶原点矩。

  • 第22题:

    设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()


    正确答案:统计量

  • 第23题:

    问答题
    设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.

    正确答案:
    解析: