itgle.com
参考答案和解析
答案:B
解析:
Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。
更多“设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。”相关问题
  • 第1题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


    A.① ②
    B.① ③
    C.② ④
    D.③ ④


    答案:B
    解析:

  • 第2题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第3题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第4题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第5题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第6题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    =0

    B

    ≠0

    C

    =1

    D

    ≠1


    正确答案: B
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第7题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    <0

    B

    ≠0

    C

    >0

    D

    =0


    正确答案: A
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第8题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。
    A

    A*X()0()的解均是AX()0()的解

    B

    AX()0()的解均是A*X()0()的解

    C

    AX()0()与A*X()0()无非零公共解

    D

    AX()0()与A*X()0()仅有2个非零公共解


    正确答案: A
    解析:
    由齐次方程组AX()0()有两个线性无关的解向量,知方程组AX()0()的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1。由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0。所以任意n维列向量均是方程组A*X()0()的解,故方程组AX()0()的解均是A*X()0()的解。

  • 第9题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第10题:

    设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
      ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
      ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
      ③若Ax=0与Bx=0同解,则秩(A)=秩(B);

      ④若秩(A)=秩(B)则Ax=0与Bx=0同解;

      以上命题中正确的是

    A.①②.
    B.①③.
    C.②④.
    D.③④,

    答案:B
    解析:
    显然命题④错误,因此排除(C)、(D).对于(A)与(B)其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B)”正确,知“若Bx=0的解均是Ax=0的解,则秩(B)≥秩(A)”正确,可见“若Ax=0与Bx=0同解,则秩(A)=秩(B)”正确.即命题③正确,故应选(B).

  • 第11题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第12题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第13题:

    填空题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

    正确答案: ≠0
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第14题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).
    A

    A*X=0的解均是AX=0的解

    B

    AX=0的解均是A*X=O的解

    C

    AX=0与A*X=0无非零公共解

    D

    AX=0与A*X=O仅有2个非零公共解


    正确答案: B
    解析:
    由齐次方程组AX=0有两个线性无关的解向量,知方程组AX=0的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1.由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0.所以任意n维列向量均是方程组A*X=0的解,故方程组AX=0的解均是A*X=0的解.

  • 第15题:

    单选题
    n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。
    A

    A为方阵且|A|≠0

    B

    导出组AX()0()仅有零解

    C

    秩(A)=n

    D

    系数矩阵A的列向量组线性无关,且常数向量b()与A的列向量组线性相关


    正确答案: C
    解析:
    A项,系数矩阵A不一定是方阵;B项,导出组只有零解,方程组AX()b()不一定有解;C项,当r(A)=n时,不一定有r(A)=r(A(_))=n;D项,b()可由A的列向量组线性表示,则方程组AX()b()有唯一解。

  • 第16题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。