itgle.com
更多“口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于( ).”相关问题
  • 第1题:

    在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?

    A.14

    B.15

    C.17

    D.18


    正确答案:B
    [答案] B。解析:抽屉原理,最坏的情况是10个黑球和4个红球都拿出来了,第15次拿到的肯定是白球。

  • 第2题:

    袋中有5个大小相同的球,其中3个是白球,2个是红球,一次随机地取出3个球,其中恰有2个是白球的概率是:


    答案:D
    解析:

  • 第3题:

    一位乒乓球学员手中拿着装有7只乒乓球的不透明口袋,其中3只黄球,4只白球。他随机取出一只乒乓球,观察颜色后放回袋中,同时放入2只与取出的球同色的球,这样连续取2次,则他取出的两只球中第1次取出的是白球,第2次取出的是黄球的概率是

    A.8/77
    B.4/21
    C.2/11
    D.4/7

    答案:B
    解析:
    第一步,第一次取出白球的概率为4/7。第二步,由题意取出白球后会再放入2个白球,球的总数为9。第二次取出黄球的概率为3/9=1/3,故第一次取出白球,第二次取出黄球的概率为4/7×1/3=4/21。因此,选择B选项。

  • 第4题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第5题:

    一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )

    A.2.5;
    B.3.5;
    C.3.8;
    D.以上都不对

    答案:C
    解析:

  • 第6题:

    口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是______.


    答案:
    解析:

  • 第7题:

    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()

    • A、3个
    • B、9个
    • C、13个
    • D、14个

    正确答案:D

  • 第8题:

    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().

    • A、21/90.
    • B、21/45
    • C、21/100
    • D、21/50

    正确答案:B

  • 第9题:

    一口袋装有3只红球,2只黑球,今从中任意取出2只球,那么这2只球恰有一红一黑的概率是3/5


    正确答案:正确

  • 第10题:

    单选题
    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()
    A

    3个

    B

    9个

    C

    13个

    D

    14个


    正确答案: D
    解析: 暂无解析

  • 第11题:

    箱子里有红、白两种玻璃球。红球是向球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱子里红球比白球多多少个?( )

    A.102

    B.104

    C.106

    D.108


    正确答案:D
    假设箱子里原来有白球x个,那么红球为(3x--2)个,依题意有(x-6)÷7=(3x-2-72)÷13,解得x=55,所以原来红球比白球多3×55-2-55=108(个)。故选D。

  • 第12题:

    现有 A、B 两个容器,容器 A 中有 7 个红球 3 个白球,容器 B 中有 1 个红球 9 个白球,现已 知从这两个容器里任意取出一球,且是红球,则该红球来自容器 A 的概率是:

    A.35%
    B.50%
    C.72.5%
    D.87.5%

    答案:D
    解析:
    两个容器共有8个红球,任取一个球是红球有8种情况,其中有7种情况来自容器A,则红球来自容器A的概率是7÷8=87.5%。

  • 第13题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第14题:

    甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只,从这三只盒子的任意一只中任取出一只球,它是红球的概率是( )

    A.0.5625
    B.0.5
    C.0.45
    D.O.375
    E.0.225

    答案:D
    解析:

  • 第15题:

    一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.


    答案:
    解析:

  • 第16题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第17题:

    布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是。()

    • A、1/5
    • B、1/6
    • C、1/2
    • D、1/3。

    正确答案:D

  • 第18题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第19题:

    单选题
    在一个口袋里有黑球、白球、红球、蓝球各13个,则至少取出几个球才能保证有6个相同颜色的球()
    A

    24

    B

    23

    C

    22

    D

    21


    正确答案: D
    解析: 根据最差原则,先取出黑球、白球、红球、蓝球各5个,最后任意取出1个球,都能保证有6个颜色相同的球。5×4+1=21。

  • 第20题:

    单选题
    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().
    A

    21/90.

    B

    21/45

    C

    21/100

    D

    21/50


    正确答案: C
    解析: 暂无解析