itgle.com

设向量组的秩为r,则: A.该向量组所含向量的个数必大于r B.该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关 C.该向量组中有r个向量线性无关,有r+1个向量线性相关 D.该向量组中有r个向量线性无关,任何r+1个向量必线性相关

题目
设向量组的秩为r,则:

A.该向量组所含向量的个数必大于r
B.该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关
C.该向量组中有r个向量线性无关,有r+1个向量线性相关
D.该向量组中有r个向量线性无关,任何r+1个向量必线性相关

相似考题
更多“设向量组的秩为r,则: ”相关问题
  • 第1题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第2题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第3题:

    设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:
      (Ⅰ)秩r(A)≤2;
      (Ⅱ)若α,β线性相关,则秩r(A)<2.


    答案:
    解析:
    【证明】(Ⅰ)因为α,β为三维列向量,那么αα^T和ββ^T都是三阶矩阵,
    且秩r(αα^T)≤1,r(ββ^T)≤1.
    那么,r(A)=r(αα^T+ββ^T)≤r(αα^T)+r(ββ^T)≤2.
    (Ⅱ)由于α,β线性相关,不妨设α=kβ,于是
    r(A)=r(αα^T+ββ^T)=r((1+k^2)ββ^T)≤r(β)≤1<2.
    【评注】本题考查矩阵秩的性质公式.
    (Ⅰ)中有两个基本知识点:①r(αα^T)≤1和②r(A+B)≤r(A)+r(B).
    (Ⅱ)中有两个基本知识点:①α,β线性相关的几何意义和②r(kA)=r(A),k≠0.
    注意,如果分块矩阵比较熟悉,本题的(Ⅰ)也可如下处理:
    因为

    那么
    从而r(A)≤2.

  • 第4题:

    设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。

    A.若向量组I线性无关.则r≤S
    B.若向量组I线性相关,则r>s
    C.若向量组Ⅱ线性无关,则r≤s
    D.若向量组Ⅱ线性相关,则r>s

    答案:A
    解析:
    由于向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即

  • 第5题:

    设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )

    A.秩(C)=秩(A)
    B.秩(C)=秩(B)
    C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等
    D.若秩(A)=秩(B)=r,则秩(C)=r

    答案:C
    解析:

  • 第6题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第7题:

    单选题
    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
    A

    1

    B

    -2

    C

    1或-2

    D

    任意数


    正确答案: D
    解析: 暂无解析

  • 第8题:

    问答题
    设向量组(Ⅰ)α1,α2,…,αs.(Ⅱ)β1,β2,…,βt.(Ⅲ)α1,α2,…,αs,β1,β2,…,βt.的秩依次为r1,r2,r3.证明:max(r1,r2)≤r3≤r1+r2.

    正确答案:
    当r1,r2中有一个为0的,等式显然成立.
    当r1≠0,r2≠0,设向量组①:α12,…,αr1;②:β12,…,βr2;③:δ12,…,δr3分别是向量组(Ⅰ)、(Ⅱ)和(Ⅲ)的极大线性无关组.
    显然③可由①和②线性表示,又③线性无关,故r3≤r1+r2.由于①、②可由③线性表示,所以r1≤r3,r2≤r3,即max(r1,r2)≤r3.所以max(r1,r2)≤r3≤r1+r2.
    解析: 暂无解析

  • 第9题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第10题:

    单选题
    设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则(  ).
    A

    向量组α11,α22,…,αss的秩为r1+r2

    B

    向量组α11,α22,…,αss秩为rl-r2

    C

    向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl+r2

    D

    向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl


    正确答案: A
    解析:
    向量组β1,β2,…,βs可由向量组α1,α2,…,αs线性表示,则向量组α1,α2,…,αs,β1,β2,…,βs也可由其线性表示,所以α1,α2,…,αs向量组的极大线性无关组也是该向量组的极大线性无关组,故其秩为rl

  • 第11题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第12题:

    设向量组,,若此向量组的秩为2,求的值。


    答案:
    解析:

  • 第13题:

    设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.


    答案:1、2.
    解析:
    因(Aα1,Aα2,Aα3)=A(α1,α2,α3),又α,α,α是三维线性无关列向量,所以(α1,α2,α3)为三阶可逆矩阵故r(Aα1,Aα2,Aα3)=r(A)=2.

  • 第14题:

    设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.


    答案:
    解析:

  • 第15题:

    设n阶方阵M的秩r(M)=r
    A.任意一个行向量均可由其他r个行向量线性表示
    B.任意r个行向量均可组成极大线性无关组
    C.任意r个行向量均线性无关
    D.必有r个行向量线性无关

    答案:D
    解析:

  • 第16题:

    设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().

    • A、1
    • B、-2
    • C、1或-2
    • D、任意数

    正确答案:B

  • 第17题:

    问答题
    设向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s;(Ⅱ)β(→)1,β(→)2,…,β(→)t;(Ⅲ)α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t的秩依次为r1,r2,r3。证明:max(r1,r2)≤r3≤r1+r2。

    正确答案:
    当r1,r2中有一个为0的,等式显然成立。
    当r1≠0,r2≠0,设向量组①:α()1,α()2,…,α()r1;②:β()1,β()2,…,β()r2;③:δ()1,δ()2,…,δ()r3分别是向量组(Ⅰ)、(Ⅱ)和(Ⅲ)的极大线性无关组。显然③可由①和②线性表示,又③线性无关,故r3≤r1+r2。由于①、②可由③线性表示,所以r1≤r3,r2≤r3,即max(r1,r2)≤r3。所以max(r1,r2)≤r3≤r1+r2
    解析: 暂无解析

  • 第18题:

    单选题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。
    A

    必定r<s

    B

    向量组中任意个数小于r的部分组线性无关

    C

    向量组中任意r个向量线性无关

    D

    若s>r,则向量组中任意r+l个向量必线性相关


    正确答案: A
    解析:
    A项,r可能与s相等;
    B项,若r<s,向量组中可以有两个向量成比例;
    C项,当r小于s/2时,r个向量可能相关;
    D项,任意r+1个向量若不线性相关,则向量组的秩为r+1,故必相关。

  • 第19题:

    单选题
    设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).
    A

    r<s时,向量组(Ⅱ)必线性相关

    B

    r>s时,向量组(Ⅱ)必线性相关

    C

    r<s时,向量组(Ⅰ)必线性相关

    D

    r>s时,向量组(Ⅰ)必线性相关


    正确答案: B
    解析:
    设向量组(Ⅰ)的秩为r1,向量组(Ⅱ)的秩为r2,由(Ⅰ)可由(Ⅱ)线性表示,知r1≤r2.又r2≤s,若r>s,故r>s≥r2≥r1,所以向量组(Ⅰ)必线性相关;若r<s,不能判定向量组(Ⅰ)和(Ⅱ)的线性相关性.

  • 第20题:

    问答题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

    正确答案:
    (1)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多于r个向量的向量组必线性相关,所以α()j1,α()j2,…,α()jr,α()i(i=1,2,…,s;i≠j1,j2,…,jr)线性相关,从而①为原向量组的极大线性无关组。
    (2)设①:α()j1,α()j2,…,α()jrα()1,α()2,…,α()s中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价。等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r。又向量组①只含r个向量,故向量组①线性无关,因此由(1)的结论有①是原向量组的极大线性无关组。
    解析: 暂无解析

  • 第21题:

    单选题
    设向量组的秩为r,则:()
    A

    该向量组所含向量的个数必大于r

    B

    该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关

    C

    该向量组中有r个向量线性无关,有r+1个向量线性相关

    D

    该向量组中有r个向量线性无关,任何r+1个向量必线性相关


    正确答案: C
    解析: 暂无解析

  • 第22题:

    单选题
    设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).
    A

    (Ⅰ)是(Ⅱ)的极大线性无关组

    B

    r(Ⅰ)=r(Ⅱ)

    C

    当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)

    D

    当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)


    正确答案: B
    解析:
    题设中只给出向量组(Ⅰ)是(Ⅱ)的部分线性无关组,则不能判定其为(Ⅱ)的极大线性无关组,也没有r(Ⅰ)=r(Ⅱ),若向量组(Ⅱ)可由(Ⅰ)线性表示,则向量组(Ⅰ)和(Ⅱ)等价,即r(Ⅰ)=r(Ⅱ).