itgle.com
更多“设,求一秩为2的3阶方阵B使AB=0”相关问题
  • 第1题:

    设A,B是n阶方阵,A≠0且AB=0,则( ).

    A.|B|=0或|A|=0:
    B.B=0;
    C.BA=O:
    D.


    答案:A
    解析:

  • 第2题:

    设A,B是n阶方阵,且AB=0.则下列等式成立的是( ).

    A.A=0或B=0
    B.BA=0
    C.
    D.

    答案:D
    解析:

  • 第3题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第4题:

    设A,B是n阶方阵,A≠0且AB=0,则( ).

    A.|
    B.B=0;
    C.BA=O:
    D.


    答案:A
    解析:

  • 第5题:

    设3阶方阵A的秩R(A)=1,则A的伴随矩阵的秩R()等于().

    • A、3
    • B、2
    • C、1
    • D、0

    正确答案:D

  • 第6题:

    单选题
    设A、B都是满秩的n阶方阵,则r(AB)=(  )。
    A

    n-1

    B

    n

    C

    n+1

    D

    n+2


    正确答案: A
    解析:
    由行列式,|AB|=|A|·|B|且A、B均为满秩的n阶矩阵,则有|AB|≠0,即矩阵AB满秩,故r(AB)=n。

  • 第7题:

    填空题
    设A、B都是4阶方阵且AB=0,则r(A)+r(B)____。

    正确答案: ≤4
    解析:
    由AB=0,知矩阵B的列向量是方程组AX()0()的解,令r(A)=r1,r(B)≤4-r1,故r(A)+r(B)≤4。

  • 第8题:

    单选题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: A
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第9题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第10题:

    单选题
    设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。
    A

    3

    B

    2

    C

    1

    D

    0


    正确答案: C
    解析:
    由于α()1α()2α()3不是Ax()0()的解,故AB≠0,所以r(AB)>0。
    又因r(AB)<r(A),故B不可逆,即r(B)≤2,从而r(AB)<r(B)≤2,即r(AB)=1。

  • 第11题:

    填空题
    设A、B都是满秩的n阶方阵,则r(AB)=____。

    正确答案: n
    解析:
    由行列式,|AB|=|A|·|B|且A、B均为满秩的n阶矩阵,则有|AB|≠0,即矩阵AB满秩,故r(AB)=n。

  • 第12题:

    单选题
    设A、B都是满秩的n阶方阵,则r(AB)=(  )。
    A

    1

    B

    2

    C

    n-1

    D

    n


    正确答案: C
    解析:
    由行列式,|AB|=|A|·|B|且A、B均为满秩的n阶矩阵,则有|AB|≠0,即矩阵AB满秩,故r(AB)=n。

  • 第13题:

    设 A 、 B 为n阶方阵,AB=0 ,则



    答案:C
    解析:

  • 第14题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第15题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第16题:

    4阶方阵A的秩为2,则其伴随矩阵An的秩为( )。

    A. 0 B. 1 C. 2 D. 3


    答案:A
    解析:
    提示:A所有三阶子式为零,故An是零矩阵。

  • 第17题:

    设A为n阶方阵,且|A|=a≠0,则|A*|等于()。

    • A、a
    • B、an-1
    • C、an

    正确答案:C

  • 第18题:

    单选题
    设A、B为四阶方阵,r(A)=4,r(B)=3,则r[(AB)*]=(  ).
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    由r(A)=4,知A*是满秩矩阵,由r(B)=3,知r(B*)=1,矩阵与可逆矩阵相乘其秩不变,故有r[(AB)*]=r(B*A*)=r(B*)=1

  • 第19题:

    单选题
    设3阶方阵A的秩R(A)=1,则A的伴随矩阵的秩R()等于().
    A

    3

    B

    2

    C

    1

    D

    0


    正确答案: B
    解析: 暂无解析

  • 第20题:

    单选题
    设A、B都是满秩的n阶方阵,则r(AB)=(  )。
    A

    0

    B

    1

    C

    n-1

    D

    n


    正确答案: C
    解析:
    由行列式,|AB|=|A|·|B|且A、B均为满秩的n阶矩阵,则有|AB|≠0,即矩阵AB满秩,故r(AB)=n。

  • 第21题:

    单选题
    设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: B
    解析:
    由A是4阶方阵且r(A)=3,知|A|=0,又AA*=|A|E=0为A的齐次方程组,则A*的列向量是齐次方程组Ax()0()的解,故r(A)+r(A*)≤4,则r(A*)≤1。由r(A)=3知,A至少有一个代数余子式不为0,故A*≠0,所以r(A*)=1。

  • 第22题:

    问答题
    设A是n阶方阵,AAT=E,|A|<0,求|A+E|,其中AT是A的转置矩阵。

    正确答案:
    因为AAT=E,所以,A+E,=,A+AAT,=,A(E+AT),=,A,·,E+AT,=,A,·,E+A,,整理得,,A+E,(1-,A,)=0。由,A,<0,知1-,A,≠0,故,A+E,=0。
    解析: 暂无解析

  • 第23题:

    单选题
    设A、B都是4阶方阵且AB=0,则r(A)+r(B)(  )。
    A

    ≤1

    B

    ≤2

    C

    ≤3

    D

    ≤4


    正确答案: C
    解析:
    由AB=0,知矩阵B的列向量是方程组AX()0()的解,令r(A)=r1,r(B)≤4-r1,故r(A)+r(B)≤4。