itgle.com
参考答案和解析
答案:
解析:
更多“设A、B、C为同阶矩阵,且C为非奇异矩阵,满足,求证:”相关问题
  • 第1题:

    设A,B为同阶可逆矩阵,则( )。

    A.AB=BA
    B.
    C.
    D.存在可逆矩阵P和Q,使PAQ=B

    答案:D
    解析:

  • 第2题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第3题:

    设A为n阶矩阵,则A以零为其特征值是A为奇异矩阵(即 A =0)的:
    A.充分非必要条件
    B.必要非充分条件
    C.既非充分也非必要条件
    D.充分必要条件


    答案:D
    解析:
    提示:可通过下面证明说明。充分性:若矩阵A有特征值0→矩阵A奇异(即 A =0),若λ=0为矩阵A的特征值,则存在非零向量a,使Aa=0a,Aa=0,即齐次线性方程组Ax =0有非零解,故 A =0,故矩阵A为奇异矩阵。
    必要性:若矩阵A是奇异矩阵,即 A =0→λ=0是矩阵A的特征值,已知A是奇异矩阵, A =0,取λ=0,有 A-λE = A-0E= A =0,λ=0,满足特征方程 A-λE =0,故λ=0 是矩阵A的特征值。

  • 第4题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第5题:

    设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵


    答案:
    解析:

  • 第6题:

    设A,B为同阶矩阵,且.证明当且仅当


    答案:
    解析:

  • 第7题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第8题:

    设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.


    答案:
    解析:

  • 第9题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第10题:

    设A为3阶矩阵.P为3阶可逆矩阵,且
    A.
    B.
    C.
    D.


    答案:B
    解析:
    故选B。

  • 第11题:

    问答题
    设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。

    正确答案: 因为A非奇异,U的对角元uii不为零,又LU分解等价于高斯消去法,aii(i)=uii≠0由引理可知,矩阵A的顺序主子式均不为零。
    解析: 暂无解析

  • 第12题:

    填空题
    设,B为三阶非零矩阵,且AB=0,则t=____。

    正确答案: -3
    解析:
    由B是三阶非零矩阵,且AB=0,知B的列向量是方程组AB=0的解且为非零解,故|A|=0,解得t=-3。

  • 第13题:

    ,B是三阶非零矩阵,且,则().



    答案:B
    解析:

  • 第14题:

    设A、B为同阶可逆矩阵,则



    答案:D
    解析:

  • 第15题:

    设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


    答案:
    解析:

  • 第16题:

    设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.


    答案:
    解析:

  • 第17题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第18题:

    设A为三阶矩阵,且|A|=4,则=_______.


    答案:
    解析:

  • 第19题:

    设A,B为n阶矩阵,且r(A)+r(B)

    答案:
    解析:

  • 第20题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第21题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第22题:

    设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。


    正确答案: 因为A非奇异,U的对角元uii不为零,又LU分解等价于高斯消去法,aii(i)=uii≠0由引理可知,矩阵A的顺序主子式均不为零。

  • 第23题:

    问答题
    设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

    正确答案:
    因为Am=E,所以,Am,=,A,m=1,,A,=1≠0,即矩阵A可逆。
    由题知A(~)=(A*)T,其中A*为A的伴随矩阵。所以有(A(~))m=[(A*)T]m=[(,A,A-1)T]m=[(A-1)T]m=[(Am)-1]T=E。
    解析: 暂无解析