itgle.com
更多“设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2= ”相关问题
  • 第1题:

    设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().


    答案:A
    解析:

  • 第2题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第3题:

    设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率


    答案:
    解析:
    总体均值为E(X)=μ,

    =Ф(3)-Ф(-3)=2Ф(3)-1=0.9973

  • 第4题:

    设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,


    答案:
    解析:

  • 第5题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第6题:

    设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


    答案:
    解析:

  • 第7题:

    设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.


    答案:
    解析:
    【分析】答案应填.

  • 第8题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差


    答案:
    解析:

  • 第9题:

    设总体X的概率密度为
      
    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.

    (Ⅰ)求参数λ的矩估计量;

    (Ⅱ)求参数λ的最大似然估计量.


    答案:
    解析:

  • 第10题:

    设总体X的概率密度为
      
      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第11题:

    设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).
      (Ⅰ)求T的概率密度;
      (Ⅱ)确定a,使得aT为θ的无偏估计.


    答案:
    解析:

  • 第12题:

    设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()


    正确答案:9

  • 第13题:

    设X1,X2,…Xn是简单随机样本,则有( )。
    A. X1,X2,…Xn相互独立 B. X1,X2,…Xn有相同分布
    C. X1,X2,…Xn彼此相等 D.X1与(X1,+X2)/2同分布
    E.X1与Xn的均值相等


    答案:A,B,E
    解析:
    简单随机样本满足随机性和独立性,且每一个样本都与总体同分布,样本均值相等。

  • 第14题:

    设总体X的分布函数为
      
      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
      (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.


    答案:
    解析:

  • 第15题:

    设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.


    答案:1、F 2、(10,5)
    解析:
    本题是数三的考题,由于X~N(0,2^2),则 
    且相互独立,故

    答案应填服从F分布,参数为(10,5).

  • 第16题:

    设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).


    答案:
    解析:

  • 第17题:

    设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?


    答案:
    解析:
    由切比雪夫不等式得

  • 第18题:

    设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Yb,Yn).


    答案:
    解析:

  • 第19题:

    设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.


    答案:
    解析:

  • 第20题:

    设总体X的分布函数为

    其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求EX与EX^2;
      (Ⅱ)求θ的最大似然估计量.
      (Ⅲ)是否存在实数a,使得对任何ε>0,都有


    答案:
    解析:
    【分析】(Ⅰ)给出F(x;θ)就有f(x;θ),密度函数有了,就有

  • 第21题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第22题:

    设总体X的概率密度为
      
      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第23题:

    设X1,X2...,Xn是来自总体的简单随机样本,则X1,X2,...,Xn必然满足()

    • A、独立但分布不同
    • B、分布相同但不相互独立
    • C、独立同分布
    • D、不能确定

    正确答案:C