itgle.com
参考答案和解析
答案:
解析:
由X1,X2…,X7与总体服从相同的分布且相互独立,得
于是
查表得,故
更多“设X1,X2,…,X7是总体X~N(0,4)的简单随机样本,求P”相关问题
  • 第1题:

    设(X1,X2,X3)为来自总体X的简单随机样本,则下列不是统计量的是().


    答案:B
    解析:
    因为统计量为样本的无参函数,故选(B).

  • 第2题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第3题:

    设总体X~N(0,σ^2),X1,X2,…,X20是总体X的简单样本,求统计量U=所服从的分布.


    答案:
    解析:

  • 第4题:

    设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率


    答案:
    解析:
    总体均值为E(X)=μ,

    =Ф(3)-Ф(-3)=2Ф(3)-1=0.9973

  • 第5题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第6题:

    设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


    答案:
    解析:

  • 第7题:

    设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,
      X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.


    答案:
    解析:

  • 第8题:

    设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2=
    ,则E(S^2)=_______.


    答案:
    解析:

  • 第9题:

    设总体X~N(0,2^2),X1,X2,…,X30为总体X的简单随机样本,求统计量U=所服从的分布及自由度.


    答案:
    解析:

  • 第10题:

    设总体X的概率密度为
      
    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.

    (Ⅰ)求参数λ的矩估计量;

    (Ⅱ)求参数λ的最大似然估计量.


    答案:
    解析:

  • 第11题:

    设总体X的概率密度为
      
      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第12题:

    设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).
      (Ⅰ)求T的概率密度;
      (Ⅱ)确定a,使得aT为θ的无偏估计.


    答案:
    解析:

  • 第13题:

    设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().


    答案:A
    解析:

  • 第14题:

    设总体X的分布函数为
      
      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
      (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.


    答案:
    解析:

  • 第15题:

    设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.


    答案:
    解析:

  • 第16题:

    设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.


    答案:1、F 2、(10,5)
    解析:
    本题是数三的考题,由于X~N(0,2^2),则 
    且相互独立,故

    答案应填服从F分布,参数为(10,5).

  • 第17题:

    设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?


    答案:
    解析:
    由切比雪夫不等式得

  • 第18题:

    设X1,X2,X3,X4,X5为来自正态总体X~N(0,4)的简单随机样本,y=a(X1-2X2)^2+b(3X3-4X3)^2+(abc≠o),且y~χ^2(n),则a=_______,b=_______,c=_______,b=_______.


    答案:
    解析:
    因为X1-2X2~N(0,20),3X3-4X4~N(0,100),X5~N(0,4),所以于是

  • 第19题:

    设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Yb,Yn).


    答案:
    解析:

  • 第20题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).


    答案:
    解析:

  • 第21题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差


    答案:
    解析:

  • 第22题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第23题:

    设总体X的概率密度为
      
      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析: