itgle.com
更多“若三次多项式f(x)满足f(2)=f(-1)=f(1)=0,f(0)=4,则f(-2)=( )”相关问题
  • 第1题:

    已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=()。

    A.0

    B.-1

    C.-2

    D.-3


    正确答案:B
    32.B【解析】由f(2+x)=f(2-x)可知该函数对称轴为x=2,而根据f(x)=x2+ax+3,可知该函数为二次函数。那么根据二次函数的性质,可知a=(-2)×1×2=-4,则f(2)=22+(-4)×2+3=-1,所以答案为B项。

  • 第2题:

    设f1(x)和f2(x)为二阶常系数线性齐次微分方程y"+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?

    A.f1(x) *f'2(x)-f2(x)f'1(x)=0
    B.f1(x) * f’2(x)-f2(x) *f'1(x)≠0
    C.f1(x)f'2(x)+f2(x)*f'1(x) =0
    D.f1(x)f'2(x)+f2(x)*f'1(x) ≠0

    答案:B
    解析:

  • 第3题:

    若函数f(x)满足方程f"(x)+f'(x)-2f(x)=0及f"(x)+f(x)=2e……x,则f(x)=________.


    答案:1、e^x.
    解析:

  • 第4题:

    若实值函数f定义域为全体实数,且满足任意x,y:f(x+y)=f(x)f(y)。此时,若f(8)=4,则有f(2)=( )。
    A. 0 D. 2


    答案:C
    解析:

  • 第5题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第6题:

    设fˊ(-1)=1,fˊ(0)=3,fˊ(2)=4,则抛物插值多项式中x2的系数为()。

    • A、-0.5
    • B、0.5
    • C、2
    • D、-2

    正确答案:A

  • 第7题:

    用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

    • A、f(x0)f″(x)>0
    • B、f(x0)f′(x)>0
    • C、f(x0)f″(x)<0
    • D、f(x0)f′(x)<0

    正确答案:A

  • 第8题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第9题:

    单选题
    设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为(  )。
    A

    f1(x)f2′(x)-f2(x)f1′(x)=0

    B

    f1(x)f2′(x)+f1′(x)f2(x)=0

    C

    f1(x)f2′(x)-f1′(x)f2(x)≠0

    D

    f1′(x)f2(x)+f2(x)f1(x)≠0


    正确答案: A
    解析:
    要使c1f1(x)+c2f2(x)是方程y″+p(x)y′+q(x)y=0的通解,则须满足f1(x),f2(x)线性无关,即ψ(x)=f1(x)/f2(x)≠k(k为常数)。则ψ′(x)=[f1′(x)f2(x)-f1(x)f2′(x)]/f22(x)≠0,即f1′(x)f2(x)-f1(x)f2′(x)≠0。

  • 第10题:

    填空题
    设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。

    正确答案: 16,7,0+16(x-0)+7(x-0)(x-1)
    解析: 暂无解析

  • 第11题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析

  • 第12题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    -1/2

    B

    -1/4

    C

    -1/7

    D

    -1/9


    正确答案: C
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第13题:

    数学运算

    已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=( )。

    A.0

    B.-1

    C.-2

    D.3


    正确答案:B
    [解析]本题答案为B。本题属于函数问题。由f(2+x)=f(2-x)知道函数f(x)的对称轴为x= 2,因此-(a/2)=2,a=-4。所以f(2)=22-2×4+3=-1。

  • 第14题:

    若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。

    A.f′(x)<0,f″(x)<0
    B.f′(x)<0,f″(x)>0
    C.f′(x)>0,f″(x)<0
    D.f′(x)>0,f″(x)>0

    答案:A
    解析:
    已知在给出的(0,+∞)内,f′(x)>0,f″(x)<0,故在(0,+∞)上f(x)单调递增,且图形是凸的,再根据已知条件f(-x)=f(x)可知f(x)是偶函数,利用图形的对称性可得出f(x)在(-∞,0)是单调递减且也是凸的。故应该选择A。

  • 第15题:

    已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)=



    答案:C
    解析:
    由f(x)=f(x+4),知f(x)是周期为4的周期函数,故f(19)=f(-1),

  • 第16题:

    设三次多项式函数则f(x)的极大值点为( )


    A.0

    B.1

    C.-1

    D.2

    答案:C
    解析:

  • 第17题:

    若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。
    A. 0 B. 1 C. 2 D.不存在


    答案:B
    解析:
    提示:利用积分上限函数求导和洛必达法则。

  • 第18题:

    设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。


    正确答案:16;7;0+16(x-0)+7(x-0)(x-1)

  • 第19题:

    设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?

    • A、f1(x)·f′2(x)-f2(x)f′1(x)=0
    • B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0
    • C、f1(x)f′2(x)+f2(x)·f′1(x)=0
    • D、f1(x)f′2(x)+f2(x)f′1(x)≠0

    正确答案:B

  • 第20题:

    单选题
    设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?()
    A

    f1(x)f′2(x)-f2(x)f′1(x)=0

    B

    f1(x)f′2(x)-f2(x)f′1(x)≠0

    C

    f1(x)f′2(x)+f2(x)f′1(x)=0

    D

    f1(x)f′2(x)+f2(x)f′1(x)≠0


    正确答案: C
    解析: 暂无解析

  • 第21题:

    单选题
    设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。
    A

    f(0)=1为f(x)的极小值

    B

    f(0)=1为f(x)的极大值

    C

    (0,f(0))为曲线y=f(x)的拐点

    D

    由g(x)才能确定f(x)的极值或拐点


    正确答案: B
    解析:
    由f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0,得f″(0)=0。f″(x)+f′(x)g(x)+f(x)x=ex-1两边对x求导有
    f‴(x)+f″(x)g(x)+f′(x)g′(x)+f′(x)x+f(x)=ex
    可得f‴(0)=0,①两边再次对x求导得f4(x)+f‴(x)g(x)+2f″(x)g′(x)+f′(x)g″(x)+f″(x)x+2f′(x)=ex,可得f4(0)=1>0,故f(0)=1为f(x)的极小值。故应选(A)。

  • 第22题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1

    B

    -1

    C

    1/7

    D

    -1/7


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x=0=f′(4)·4y′|x=0+f′(2)(1+y′|x=0),y′|x=0=4y′|x=0+(1+y′|x=0)/2,解得y′|x=0=-1/7。

  • 第23题:

    单选题
    设fˊ(-1)=1,fˊ(0)=3,fˊ(2)=4,则抛物插值多项式中x2的系数为()。
    A

    -0.5

    B

    0.5

    C

    2

    D

    -2


    正确答案: A
    解析: 暂无解析