itgle.com
更多“设平面闭区域D由x=0,y=0,x+y=1/2,x+y=1 所围成。 ”相关问题
  • 第1题:

    以下选项错误的是

    A.main()

    { int x,y,z;

    x=0;y=x-1;

    z=x+y;}

    B.main()

    { int x,y,z;

    x=0,y=x+1;

    z=x+y;}

    C.main()

    { int x;int

    int y;

    x=0,y=x+1;

    z=x+y;}

    D.main()

    { int x,y,z;

    x=0;y=x+1;

    z=x+y,}


    正确答案:D

  • 第2题:

    设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则.P(X+Y>1)等于().


    答案:A
    解析:

  • 第3题:

    D 域由 x 轴,x2 + y2 ? 2x = 0( y ≥ 0)及 x+y=2 所围成, f (x, y)是连续函数,化


    答案:B
    解析:
    解:选 B。
    画积分区域如下图所示,

  • 第4题:

    计算二重积分,其中积分区域D是由x=0、x=1、y=0、y=1所围成的闭区域


    答案:
    解析:











  • 第5题:

    设D是两个坐标轴和直线x+y=1所围成的三角形区域,则的值为:


    答案:C
    解析:
    提示:画出积分区域D的图形,把二重积分化为二次积分,,计算出最后答案。

  • 第6题:

    设平面闭区域D由x=0,y=0,x+y=1/2,x+y=1 所围成。


    A.I123
    B. I132
    C. I321
    D. I312

    答案:B
    解析:
    提示 为了观察方便,做出平面区域D的图形,区域D在直线x+y=1的下方,在直线x+y=1/2上方以及由直线x= 0,y = 0围成。积分区域D上的点满足1/2≤x+y≤1。
    故ln(x+y) ≤0,[ln(x+y)]3 ≤0
    由三角函数知识,当0故033
    所以平面区域D上的点满足:
    [ln(x+y)]33 3
    由二重积分性质:

  • 第7题:

    以下if语句语法正确的是()

    • A、if(x>0)x=0;elsex=1
    • B、if(x>0){x=x+y;elsex=0;}
    • C、if(x>0){x=x+y;}elsex=1;
    • D、if(x>0){x=x+y;}}else{x=0;

    正确答案:C

  • 第8题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第9题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1/5

    B

    1/7

    C

    -1/7

    D

    -1/5


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第10题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1

    B

    -1

    C

    1/7

    D

    -1/7


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x=0=f′(4)·4y′|x=0+f′(2)(1+y′|x=0),y′|x=0=4y′|x=0+(1+y′|x=0)/2,解得y′|x=0=-1/7。

  • 第11题:

    填空题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=____。

    正确答案: (ln2-1)dx
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第12题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    -1/2

    B

    -1/4

    C

    -1/7

    D

    -1/9


    正确答案: C
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第13题:

    平面上由条件X≥0、Y≥O和X+Y≤1所限定的区域,其面积为( ) 。

    A.1/2

    B.1

    C.2

    D.3


    正确答案:A
    本题考查应用数学基础知识。条件X0、Y0表示在第一象限,X+Y=1是连接(0,1)和(1,0)两点的直线。X+Y≤1是X+Y=I直线下方的区域。因此,在第一象限内,符合X+Y≤1的区域是个等腰直角三角形。两条直角边长都是1,因此面积为1/2。

  • 第14题:

    下列( )项是在D={(x,y)|x2+y2≤1,x≥0,y≥0)上的连续函数f(x,y),且f(x,y)=3(x+y)+16xy。

    A.f(x,y)=3(x+y)+32xy
    B.f(x,y)=3(x+y)-32xy
    C.f(x,y)=3(x+y)-16xy
    D.f(x,y)=3(x+y)+16xy

    答案:B
    解析:
    解本题的关键在于搞清二重积分



    是表示一个常数,对f(x,y)=3(x+y)+



    利用极坐标进行二重积分计算

  • 第15题:

    D域由x轴、x2+y2-2x=0(y≥0)及x+y=2 所围成,f(x,y)是连续函


    答案:B
    解析:
    提示:x2+y2-2x=0,(x-1)2+y2 =1,D由(x-1)2+y2 =1,(y≥0),x+y =2围成,画出

  • 第16题:

    设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.
      (Ⅰ)求X的概率密度fx(x);
      (Ⅱ)求条件概率密度.


    答案:
    解析:

  • 第17题:

    D域由x轴、x2+y2-2x=0(y≥0)及x+y=2 所围成,f(x,y)是连续



    答案:B
    解析:
    提示 x2+y2-2x=0,(x-1)2+y2 =1,D由(x-1)2+y2 =1,(y≥0),x+y =2与x

  • 第18题:

    设Y=y((x)满足2y+sin(x+y)=0,求y′.


    答案:
    解析:
    将2y+sin(x+y)=0两边对x求导,得

  • 第19题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第20题:

    单选题
    设两个相互独立的随机变盘X和Y分别服从于N(0,1)和N(1,12),则(  ).
    A

    P{X+Y≤0}=1/2

    B

    P{X+Y≤1}=1/2

    C

    P{X-Y≤0}=1/2

    D

    P{X-Y≤1}=1/2


    正确答案: A
    解析:
    令Z=X+Y,则Z~N(1,2),则P{Z≤1}=1/2

  • 第21题:

    单选题
    设两个相互独立的随机变量X和Y分别服从于N(0,1)和N(1,1),则(  )。
    A

    P{X+Y≤0}=1/2

    B

    P{X+Y≤1}=1/2

    C

    P{X-Y≤0}=1/2

    D

    P{X-Y≤1}=1/2


    正确答案: B
    解析:
    令Z=X+Y,则Z~N(1,2),则P{Z≤1}=1/2。

  • 第22题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    (ln2-1)dx

    B

    (l-ln2)dx

    C

    (ln2-2)dx

    D

    ln2dx


    正确答案: C
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第23题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    ln2-1

    B

    (ln2-1)dx

    C

    ln2+1

    D

    (ln2+1)dx


    正确答案: D
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。