itgle.com
参考答案和解析
答案:
解析:
【答案】
【考情点拨】本题考查了积分的应用的知识点.
更多“由曲线y=x3,直线x=1,z轴围成的平面有界区域的面积为_________.”相关问题
  • 第1题:

    Ω是由曲面z=x2+y2,y=x,y=0,z=1在第一卦限所围成的闭区域,f(x,y,z) 在Ω上连续,则等于:


    答案:C
    解析:
    提示:作出Ω的立体图形,并确定Ω在xOy平面上投影区域:Dxy:x2+y2 = 1,写出在直角坐标系下先z后x最后y的三次积分。

  • 第2题:

    由曲线y=ex,y=e-2x及直线x=-1所围成图形的面积是:


    答案:B
    解析:
    提示:画图分析围成平面区域的曲线位置关系,得到计算出结果。

  • 第3题:

    求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.


    答案:
    解析:


  • 第4题:

    设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·
    ①求平面图形的面积;
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:

  • 第5题:

    求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.


    答案:
    解析:

  • 第6题:

    设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积


    答案:
    解析:

  • 第7题:

    设Ω是由平面x+y+z=1与三个坐标平面所围成的空间区域,则=_________.


    答案:
    解析:

  • 第8题:

    曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。


    答案:A
    解析:
    提示:利用旋转体体积公式

  • 第9题:

    求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?


    答案:
    解析:

  • 第10题:

    设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?


    答案:
    解析:

  • 第11题:

    在yOz平面上的直线z=y绕z轴旋转一周之后得到的曲线方程为( )。

    A.z2=x2+y2
    B.x2=y2+z2
    C.x2+y2-z2=1
    D.x2+y2-z2=-1

    答案:A
    解析:
    直线绕z轴旋转所得为对顶圆锥,中心在原点。绕z轴旋转yOz平面上的直线z=y,将直

  • 第12题:

    单选题
    由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()
    A

    (293/60)π

    B

    π/60

    C

    2

    D


    正确答案: D
    解析: 暂无解析

  • 第13题:

    由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:


    答案:A
    解析:
    提示:画出平面图形,列出绕直线:y = -1旋转的体积表达式,注意旋转体的旋转

  • 第14题:

    由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体的体积为:
    A.(293/60)π B.π/60 C. 4π2 D. 5π


    答案:A
    解析:
    提示:画出平面图形,列出绕直线y=-1旋转的体积表达式,注意旋转体的旋转半径为x2/2- (-1)。计算如下:

  • 第15题:

    ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;
    ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.


    答案:
    解析:
    ①如图1—3-6所示,由已知条件可得

  • 第16题:

    ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:
    画出平面图形如图l一3-7阴影所示.
    图1—3—6

    图1—3—7

  • 第17题:

    设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分


    答案:
    解析:

  • 第18题:

    设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分.


    答案:
    解析:
    【解】由高斯公式得




    .
    【评注】在三重积分的计算中,用先二后一积分较为简单,当然也可化为三次积分计算.

  • 第19题:

    在平面有界区域内,由连续曲线C围成一个封闭图形。证明:存在实数ξ使直线y=x+ξ平分该图形的面积。


    答案:
    解析:

  • 第20题:

    设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,



    答案:D
    解析:
    积分区域如右图中阴影部分所示.D可以表示为1≤x≤2,1≤y≤x或1≤y≤2,y≤x≤2.对照所给选项,知应选D.

  • 第21题:

    求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·


    答案:
    解析:
    y=x2(x≥0),y=1及y轴围成的平面图形D如图3—1所示.其面积为

  • 第22题:

    已知曲线y=ex与直线y=c(c>1)及Y轴所围成的平面图形的面积为1,求实数c的值。


    答案:
    解析:

  • 第23题:

    由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()

    • A、(293/60)π
    • B、π/60
    • C、4π2
    • D、5π

    正确答案:A