itgle.com
更多“设曲线及x=0所围成的平面图形为D. ”相关问题
  • 第1题:

    由曲线y=ex,y=e-2x及直线x=-1所围成图形的面积是:


    答案:B
    解析:
    提示:画图分析围成平面区域的曲线位置关系,得到计算出结果。

  • 第2题:

    曲线冬y=1/2x2,x2+y2=8所围成图形的面积(上半平面部分)是:


    答案:A
    解析:
    提示:画出平面图,交点为(-2,2)、(2,2),然后列式,注意曲线的上、下位置关系。

  • 第3题:

    已知曲线C为y=2x2及直线L为y=4x.
    ①求由曲线C与直线L所围成的平面图形的面积S;
    ②求曲线C的平行于直线L的切线方程.


    答案:
    解析:
    画出平面图形如图l一3—4阴影所示.
    图1—3—3

    图1—3—4

  • 第4题:

    ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;
    ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.


    答案:
    解析:
    ①如图1—3-6所示,由已知条件可得

  • 第5题:

    设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)·
    ①求平面图形的面积;
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:

  • 第6题:

    曲线y=1-x2与x轴所围成的平面图形的面积S=()·

    A.2
    B.4/3
    C.1
    D.2/3

    答案:B
    解析:

  • 第7题:

    设封闭曲线L的极坐标方程为,则L所围成的平面图形的面积为


    答案:
    解析:

  • 第8题:

    设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标


    答案:
    解析:

  • 第9题:

    在平面有界区域内,由连续曲线C围成一个封闭图形。证明:存在实数ξ使直线y=x+ξ平分该图形的面积。


    答案:
    解析:

  • 第10题:

    设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,



    答案:D
    解析:
    积分区域如右图中阴影部分所示.D可以表示为1≤x≤2,1≤y≤x或1≤y≤2,y≤x≤2.对照所给选项,知应选D.

  • 第11题:

    设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.


    答案:
    解析:
    故切线l的方程为y=2x+2.

  • 第12题:

    (1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示)
    的面积A.
    (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.


    答案:
    解析:

  • 第13题:

    曲线y=sinx(0≤x≤2/π)与直线x=2/π,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:
    A.π2/4 B.π2/2 C.π2/4 +1 D.π2/2+1


    答案:A
    解析:
    提示:画出平面图形,绕x轴旋转得到旋转体,

  • 第14题:

    设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如
    图1—3—2中阴影部分所示).

    图1—3—1

    图1—3—2
    ①求D的面积S;
    ②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.


    答案:
    解析:

  • 第15题:

    已知函数(x)=-x2+2x.
    ①求曲线y=(x)与x轴所围成的平面图形面积S;
    ②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.


    答案:
    解析:


  • 第16题:

    ①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:
    ②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.


    答案:
    解析:
    ①由已知条件画出平面图形如图l—3-5阴影所示.

    图1—3—5

  • 第17题:

    ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:
    ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.


    答案:
    解析:
    画出平面图形如图l一3-7阴影所示.
    图1—3—6

    图1—3—7

  • 第18题:

    求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.


    答案:
    解析:

  • 第19题:

    已知曲线的方程为 ,则曲线 与x 轴围成的平面图形的面积为


    答案:
    解析:

  • 第20题:

    设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )


    答案:B
    解析:
    本题考查的知识点为定积分的几何意义.由定积分的几何意义可知应选B.常见的错误是选C.如果画个草图,则可以避免这类错误.

  • 第21题:

    曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。


    答案:A
    解析:
    提示:利用旋转体体积公式

  • 第22题:

    求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·


    答案:
    解析:
    y=x2(x≥0),y=1及y轴围成的平面图形D如图3—1所示.其面积为

  • 第23题:

    设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?


    答案:
    解析: