itgle.com
更多“设y=2^x,则dy等于().”相关问题
  • 第1题:

    设函数y=sinx2+2x,求dy.


    答案:
    解析:
    y'=2xcosx2+2,则dy=2xcosx2+2)dx.

  • 第2题:

    设函数y=ln(x2+1),求dy.


    答案:
    解析:

  • 第3题:

    若函数z=ln(xy)/y,则当x=e,y=e-1时,全微分dz等于( )。

    A. edx + dy B. e2dx-dy C. dx + e2dy D. edx+e2dy


    答案:C
    解析:
    正确答案是C。

  • 第4题:

    设Y=e-3x,则dy等于().

    A.e-3xdx
    B.-e-3xdx
    C.-3e-3xdx
    D.3e-3xdx

    答案:C
    解析:

  • 第5题:

    设函数y=(x-3)4,则dy=__________.


    答案:
    解析:
    4(x-3)3dx

  • 第6题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第7题:

    填空题
    设方程x=yy确定y是x的函数,则dy=____。

    正确答案: dx/[x(1+lny)]
    解析:
    由dx=d(yy)=d(eylny)=yyd(ylny)=yy(1+lny)dy,得dy=dx/[yy(1+lny)]=dx/[x(1+lny)]。

  • 第8题:

    单选题
    设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。
    A

    x∂z/∂x+y∂z/∂y=0

    B

    x∂z/∂x-y∂z/∂y=0

    C

    y∂z/∂x+x∂z/∂y=0

    D

    y∂z/∂x-x∂z/∂y=0


    正确答案: D
    解析:
    令u=x2-y2,则z=φ(u),∂z/∂x=φ′(u)·2x=2xφ′(u),∂z/∂y=-2yφ′(u),故y∂z/∂x+x∂z/∂y=0。

  • 第9题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    (ln2-1)dx

    B

    (l-ln2)dx

    C

    (ln2-2)dx

    D

    ln2dx


    正确答案: C
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第10题:

    填空题
    设函数y=y(x)由方程y=1-xey确定,则(dy/dx)|x=0=____。

    正确答案: -e
    解析:
    设F(x,y)=y-1+xey,则dy/dx=-Fx′/Fy′=-ey/(1+xey)。x=0时,y=1,代入上式得(dy/dx)|x0=-e。

  • 第11题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    ln2-1

    B

    (ln2-1)dx

    C

    ln2+1

    D

    (ln2+1)dx


    正确答案: D
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第12题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    0

    B

    1

    C

    2

    D

    e


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第13题:

    设函数y=sin(x2-1),则dy等于().

    A.cos(x2-1)dx
    B.-cos(x2-1)dx
    C.2xcos(x2-1)dx
    D.-2xcos(x2-1)dx

    答案:C
    解析:
    dy=y'dx=cos(x2-1)(x2-1)'dx=2xcos(x2-1)dx

  • 第14题:

    设y=1n(cosx),则微分dy等于:


    答案:C
    解析:

  • 第15题:

    设y=cos4x,则dy=(  )



    答案:B
    解析:

  • 第16题:

    设y=2x3,则dy=().

    A.2x2dx
    B.6x2dx
    C.3x2dx
    D.x2dx

    答案:B
    解析:
    由微分基本公式及四则运算法则可求得.也可以利用dy=y′dx求得故选B.

  • 第17题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第18题:

    填空题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=____。

    正确答案: 1
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第19题:

    单选题
    设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于(  )。[2014年真题]
    A

    (ydx+xdy)/(2-z)

    B

    (xdx+ydy)/(2-z)

    C

    (dx+dy)/(2+z)

    D

    (dx-dy)/(2-z)


    正确答案: C
    解析:
    对等式两边分别同时求导,得:2xdx+2ydy+2zdz=4dz。所以dz=(xdx+ydy)/(2-z)

  • 第20题:

    填空题
    设y=f[(2x-1)/(x+1)],f′(x)=ln(x1/3),则dy/dx____。

    正确答案: ln[(2x-1)/(x+1)]/(x+1)2
    解析:
    令u=(2x-1)/(x+1),则u′(x)=3/(x+1)2。dy/dx=f′(u)·u′(x)=ln(u1/3)·3/(x+1)2=ln[(2x-1)/(x+1)]/(x+1)2

  • 第21题:

    填空题
    设y=f(lnx)ef(x),其中f可微,则dy=____。

    正确答案: [f′(lnx)ef(x)/x+f′(x)f(lnx)ef(x)]dx
    解析:
    由y′=f′(lnx)efx/x+f′(x)f(lnx)efx,得dy=[f′(lnx)efx/x+f′(x)f(lnx)efx]dx。

  • 第22题:

    填空题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=____。

    正确答案: (ln2-1)dx
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第23题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    ln1

    B

    0

    C

    sin1

    D

    1


    正确答案: A
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。